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Reliability Improvement of High Performance Power Supplies
Abstract

Power electronic converters are used in the modern world so commonly that they

significantly impact people’s lifestyles. They are used in electric vehicles, renewable energy

sources, base transceiver stations, aircraft and naval board power supply systems, AC and

DC microgrids, servers, and many more applications. So common utilization of advanced

power electronics makes the reliability improvement of power supplies a pressing matter.

Demand for reliability improvement of power electronic converters is even higher in

the case of High Performance Power Supplies, like aircraft/naval board power supply

systems, mining equipment, or base transceiver stations. In this dissertation, a different

niche of High Performance Power Supplies was focused on - plasma processing systems.

Without plasma processing, there would not be any integrated circuits, flat panel displays,

solar panels, architectural glass, nor any other landmarks of XXI century. Thus, various

plasma processing techniques and systems, as well as power converter topologies for such

application, are discussed in this dissertation to bring this topic to a broader audience.

Discussion acts as an introduction for comparative analysis on methods for reliability

improvement of High Performance Power Supplies. This led to the conclusion that Design

for Reliability (DfR) is the most suitable approach for those devices. Unfortunately,

closer evaluation of engineering workflow based on this methodology indicates that

DfR procedure is too time-consuming, making it unsuitable for short lifespan projects,

typical for the plasma processing industry. Therefore, a modified DfR procedure was

proposed, which shifts the pressure from simulation study onto extensive laboratory

testing. Moreover, the proposed modification introduces the concept of the Reliability

Maintenance to the DfR procedure, which ensures that the reliability of all mass-produced

power supplies will not be worse than in the first unit. The proposed modified DfR

procedure resulting from this Ph.D. thesis is being implemented in TRUMPF Huettinger

Sp. z o. o.

Research presented in this dissertation was meant to support implementation of

modified DfR procedure. Thus, the reliability model for SiC power MOSFET in
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SOT − 227B housing was identified. For this purpose following methodologies were

introduced:

• Accelerated lifetime testing of SiC power MOSFET, which bases on i.a. grouping

of similar failure modes, to reduce number of required accelerated lifetime tests.

• Power cycling of SiC power MOSFET, which bases on linear mode operation of

tested MOSFET, and utilization of conduction losses to heat up tested structure.

Moreover, a test bench for the accelerated lifetime testing according to given method-

ologies, was designed and assembled. Test results were used to develop the reliability

model, which allows plotting a density function for the probability of failure of SiC power

MOSFET in SOT − 227B housing, for given operating conditions. Such probability

density function can be further used for useful lifetime estimation of SiC power MOSFET,

which defines a period of maintenance of High Performance Power Supply.

The dissertation is ended with a case study analysis depicting practical utilization of

modified DfR procedure. For this purpose:

• a Power Electronic Building Block (PEBB) was designed,

• a Reliability Oriented Comparative Test (ROCT) of Si MOSFET drivers was

conducted.

Keywords: Reliability Engineering, Semiconductor Device Reliability, Silicon Carbide,

Power Electronics, Energy Conversion, Energy Transformation, AC/DC Power Convert-

ers, DC/DC Power Converters
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Zwiększanie niezawodności przekształtników
energoelektronicznych specjalnego przeznaczenia

Streszczenie

W nowoczesnym świecie, przekształtniki energoelektroniczne są wykorzystywane tak

powszechnie, że mają one trwały wpływ na kształt ludzkiego życia. Stosuje się je w pojaz-

dach elektrycznych, odnawialnych źródłach energii, stacjach bazowych systemów łączności

bezprzewodowej, sytemach zasilania pokładowego statków i samolotów, mikrosieciach

prądu stałego i zmiennego, serwerowniach i wielu innych aplikacjach. Tak powszechne

wykorzystanie przekształtników energoelektronicznych, sprawia że zwiększanie niezwod-

ności przekształników energoelektronicznych staje się coraz bardziej palącym zagadnie-

niem.

Nacisk na zwiększanie niezawodności jest szczególnie wyraźny w przypadku Przeksz-

tałtników Energoelektronicznych Specjalnego Przeznaczenia, takich jak właśnie systemy

zasilania pokładowego, maszyny górnicze czy stacje bazowe systemów łączności bezprze-

wodowej. W tej rozprawie, skupiono się na innej nietypowej niszy zastosowań zasilaczy

- systemach do obróbki plazmowej. Bez nich nie byłoby układów scalonych, płaskich

ekranów, paneli fotowoltaicznych i innych sztandarowych produktów XXI wieku. Aby

przybliżyć tę tematykę szerszemu gronu odbiorców, w pracy przedstawiono główne typy

procesów i systemów obróbki plazmowej, oraz jakie topologie przekształtników mogą być

stosowane w takich systemach.

Ta dyskusja stanowi wstęp do analizy metod zwiększania niezawodności Przek-

ształtników Energoelektronicznych Specjalnego Przeznaczenia. Na jej podstawie

wywnioskowano, że metodyka projektowania zorientowanego na niezawodność (ang.

Design for Reliability (DfR)) jest najbardziej adekwatnym rozwiązaniem tego problemu.

Niestety, bliższa ocena procesu projektowego, opartego na tej metodyce, wskazuje, że

jest on zbyt czasochłonny, aby sprostać wymogom projektów o krótkim czasie życia. W

związku z tym, zaproponowano modyfikację procesu projektowania niezawodnościowego,

przenosząc nacisk z badań symulacyjnych na badania laboratoryjne prototypu. Ponadto,

zaproponowana modyfikacja wprowadza do procedury DfR pojęcie utrzymania niezawod-
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ności, które ma zapewnić, że niezawodność kolejnych serii produkowanych urządzeń nie

będzie gorsza niż pierwszej sztuki. Zaproponowana procedura jest przedmiotem wdrożenia

efektów tej rozprawy doktorskiej w firmie TRUMPF Huettinger Sp. z o. o.

Badania laboratoryjne przedstawione w tej rozprawie, posłużyły do wprowadzenia w

życie zmodyfikowanej procedury DfR, poprzez opracowanie modelu niezawodnościowego

tranzystora SiC MOSFET w obudowie SOT −227B. W tym celu opracowano metodyki:

• Przeprowadzania testu przyspieszonego tranzystora SiC MOSFET, która zakłada

m.in. grupowanie podobnych mechanizmów awarii, w celu zmniejszenia liczby

wymaganych testów przyspieszonych.

• Przeprowadzania testu cyklowania mocą tranzystora SiC MOSFET, która zakłada

wprowadzenie badanego tranzystora w zakres pracy liniowej i wykorzystanie strat

przewodzenia do podgrzewania badanego elementu.

Ponadto zaprojektowano i wykonano stanowisko badawcze, na którym przeprowadzono

badania laboratoryjne według wymienionych wyżej metodyk. Wyniki badań posłużyły

do opracowania modelu niezawodnościowego, który umożliwia wyznaczenie rozkładu

gęstości prawdopodobieństwa tranzystora SiC MOSFET w obudowie SOT − 227B, dla

określonych warunków pracy. Na jego podstawie można określić użyteczny czas życia

tranzystora, a co za tym idzie - okres po którym należałoby przeprowadzić konserwację

przekształtnika specjalnego przeznaczenia.

Rozprawę kończy studium przypadku, obrazujące praktyczne wykorzystanie zmody-

fikowanej procedury projektowania niezawodnościowego. Do tego celu opisano

• proces projektowy bloku energoelektronicznego (ang. Power Electronic Building

Block (PEBB)),

• badania porównawcze niezawodności sterowników bramkowych tranzystorów Si

MOSFET.

Słowa kluczowe: Inżynieria Niezwodnościowa, Niezawodność Elementów Półprzewod-

nikowych, Węglik Krzemu, Energoelektronika, Przetwarzanie Energii, Przekształcanie

Energii, Przekształtniki AC/DC, Przekształtniki DC/DC
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Chapter 1

Introduction

Plasma processing techniques are routinely used in the manufacturing of various types

of commonly used equipment – from corrective lenses, through drills, surgical equipment

and architectural glass, up to integrated circuits. Thus, the modern world would hardly

be recognizable without plasma processing techniques. This broad scope of applications

is mainly covered by two types of plasma processes: Chemical Vapor Deposition (CVD)

and Physical Vapor Deposition (PVD), in both of which the plasma has to be excited

and sustained by a dedicated High Performance Power Supplies (HPPSs). The wide

variety of manufacturing processes where plasma is used has triggered the development of

a large family of plasma power supplies, from devices using straight Direct Current (DC)

or Pulsed Direct Current (Pulsed DC) up to the Radio Frequency (RF) and Very High

Frequency (VHF) ranges.

Research presented in this thesis focuses on the reliability improvement of HPPSs for

plasma processing, and is meant to prove following thesis:

Thesis: It is possible to develop a probabilistic model, describing a

probability of failure of Silicon Carbide (SiC) power MOSFET, which enables

reliability evaluation of newly developed High Performance Power Supply

(HPPS) for plasma processing, according to the modified Design for Reliability

(DfR) procedure.
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Chapter 1. Introduction

To prove this thesis following goals were defined:

1. Analysis of operating conditions of HPPSs for plasma processing systems, and power

converter topologies used for such applications.

2. Proposal of the DfR procedure, suitable for development of new HPPSs.

3. Design and start-up of the Accelerated Lifetime Test (ALT) of SiC MOSFET in

SOT − 227B housing.

4. Identification of reliability model, based on the ALT results.

This dissertation is organized as follows. In chapter 1 major types of plasma

processes and their applications in the modern industry are presented. Discussion acts

as a background for description of the major types of power converters used in such

applications. Moreover, it shows why high reliability is one of the key requirements for

modern HPPSs. Next, in chapter 2, definition of the reliability is introduced and leading

strategies for reliability improvement of modern power electronic converters are compared.

Analysis presented in chapter 2 indicates that the DfR a most suitable approach for

HPPSs. Moreover, the DfR procedure for short lifespan projects - typical for the plasma

processing industry - is also presented in this chapter. Discussion ends with substantiation

why research focuses on SiC power MOSFETs. The detailed description of reliability

modelling of the SiC power MOSFET in SOT − 227B housing is given in chapter 3.

This chapter starts from preparation of the ALT, and it is being continued with the test

results analysis and post-failure examination of SiC MOSFETs subjected to the ALT.

Discussion ends with the recognition of proper mathematical distribution, which could

be further used as a reliability model for tested SiC MOSFETs. Afterwards, in chapter

4, the case study analysis for chosen aspects of proposed DfR procedure is presented.

Conclusions and summary for this thesis are given in chapter 5.
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1.1. Plasma processing techniques

1.1 Plasma processing techniques

The plasma processing technique is used to change the properties of the surface exposed

to the plasma. This may involve covering a bare surface of, e.g., a metal with single or

multiple thin layers of another material. The modification of a surface with a thin coating,

called also deposition, is used in the manufacture of many of the industrial products we

encounter every day. In the case of metal elements, such as drills, the coating can consist

of TiN , CrN , or a mixture thereof [1]. Bio-compatible protective layers for joint implants

in medical applications are manufactured in a similar process [2], whereas another example

are a thin optical coatings, which nowadays are an inherent part of the glass industry.

Windows and glass facades are made of what is known as Low-E glass, where a thin multi-

layer coating helps to control the heat transfer between the outside and inside of a building

while providing satisfactory transparency for visible light [3]. Similar examples of widely

used coatings are Ultraviolet (UV) shields (e.g. for glasses) [4], anti-reflective coatings on

glass surfaces (e.g. for architectural glass) [5] or reflective surface manufacturing (e.g. for

industrial mirrors) [6]. Plasma-deposited decorative coatings are routinely applied on a

variety of products such as bathroom taps, mobile phones and eyeglasses [7–9].

Plasma can also be used for the removal of a defined thickness of a surface or for the

precise, selective removal of certain parts of a substrate. By means of non-selective surface

removal one can obtain a defect- and contaminant-free surface (called also dry cleaning or

plasma cleaning), to ensure good adhesion between the substrate surface and the coating

deposited in the next steps of the process. In contrast, selective removal is known as

plasma dry etching process, and is used, e.g., in the manufacturing of semiconductors.

Conventional chemical etching, cleaning and solvent degreasing tend to leave pits or

residual traces of process chemicals on the treated surface, whereas plasma-based cleaning

and etching processes eliminate this drawback.

Although much of the industrial surface processing by plasma is performed in high-

or ultrahigh-vacuum conditions as a consequence of the quality requirements for the final

coating or surface properties, there are many plasma processes performed at pressures

close to atmospheric levels, referred as Atmospheric Pressure Plasma (APP). These types

13



Chapter 1. Introduction

may be used for the generation of free radicals, e.g. O3 [10], the emission of UV or Vacuum-

Ultraviolet (VUV) photons (e.g. for microbial disinfection [11]), the decomposition of

hazardous or toxic compounds, e.g. NOX , SiO2, or surface activation, to name just a

few applications [12, 13]. The main advantage of APP over PVD methods is that it takes

place at ambient pressure, which makes it possible to eliminate the high cost of a vacuum

chamber and its associated components.

In the next section, we present a short description of each type of plasma process

routinely used in industry.

1.1.1 Chemical Vapor Deposition (CVD)

Chemical Vapor Deposition is a group of deposition methods where a coating is formed

from chemical constituents reacting in the vapor phase near or on a heated surface. The

basic form of CVD is a thermal chemical vapor deposition, also called a vapor plating,

where a precursor species containing the material to be deposited, are vaporized by the

application of a high-temperature source. The vaporized precursor species reacts with

other gaseous species present inside a vacuum system to form compounds (e.g. oxides,

nitrides). Depending on the technical aspects of the process, various modifications of

CVD methods are available, such as: Vapor Phase Epitaxy (VPE), used for single

crystal film deposition [14]; Plasma-Enhanced Chemical Vapor Deposition (PECVD) or

Plasma-Assisted Chemical Vapor Deposition (PACVD), where plasma is used to induce or

accelerate the decomposition or reaction factor of a material [15], Low Pressure Chemical

Vapor Deposition (LPCVD) [16], for processes that do not require vacuum conditions

as high as those in VPE; and Metal-Organic Chemical Vapor Deposition (MOCVD),

where the precursor gas is a metal-organic compound [17]. The main advantage of

PACVD/PECVD over thermal CVD is reducing the activation temperature of the

chemical reactions from above 700◦C, down to 300◦C − 500◦C.

Although CVD and PECVD are mostly used for film deposition (e.g. in Liquid Crystal

Display (LCD) manufacturing [18]), they can also be used for the removal of a coating

from a surface in the dry etching process. The plasma sources used for chemical etching
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1.1. Plasma processing techniques

are similar to those used for plasma-enhanced chemical vapor deposition. Precursor gases

for chemical etching are selected such as will chemically react with the layer to be etched.

An excellent example is NF3 which, after decomposition in plasma, releases highly reactive

fluorine radicals and ionized fluorine compounds that react with Si or SiO2, thus removing

it from the wafer. The resulting compounds are removed from the process chamber by a

pumping system and, due to their toxicity, are then decomposed to environmentally safe

products in a plasma-assisted gas abatement process [19].

Figure 1. Simplified cross section of typical plasma chamber for a Plasma-Enhanced Chemical
Vapor Deposition (PECVD) process [20].

Furthermore, physical and chemical etching processes can also be combined in the

form of a Reactive Ion Etching (RIE) process – of key importance in the manufacturing

of semiconductors [21]. This method combines ion bombardment of a negatively biased

substrate (Si wafer) – which leads to the removal of the silicon – with the chemical

etching of the film. Such a process therefore requires at least two power supplies: one
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Chapter 1. Introduction

for the plasma source where the ions and reactive radicals are formed, and another to

negatively polarize (bias) the substrate to attract and accelerate ions to the surface being

etched away. Because this technique makes it possible to etch structures of a High Aspect

Ratio (HAR), it is widely used in the semiconductor industry: from Through-Silicon Via

(TSV) manufacturing [22], through nanocarbon film etching [23], up to GaN and Si

surface treatment [24, 25].

A schematic view of a PECVD vacuum system is presented in Fig. 1. In particular, this

is an Inductively Coupled Plasma (ICP) system geometry where the plasma is generated

by a coil surrounding the cylindrical dielectric wall of the source region. Process gases

are injected into the chamber through the source region and the plasma expands from

there into the processing chamber, where the substrate is located. The ICP coil is

supplied by an RF generator (i.e. 13.56 MHz), while the substrate, the material whose

surface properties are to be modified, is placed on the substrate holder equipped with

heaters, wafer cooling, sensors (e.g. temperature), and reference markers for the substrate

positioning system. Further, the substrate holder permits the application of a bias voltage

to the substrate using an RF power supply with the same or a lower frequency than that

of the plasma source. Depending on the design, the substrate holder can be also connected

to an additional DC power supply to apply high-voltage pulses in order to generate an

electrostatic potential on the substrate holder surface for wafer positioning.

1.1.2 Physical Vapor Deposition (PVD)

PVD is an extensive group of deposition processes in which a source material (called also

a target) is vaporized and the vapor is then settled on a substrate to form a coating.

Depending on the desired properties and composition of the deposited film, the process

may require the use of single or multiple targets, each of which may consist of one or more

elements.

PVD techniques can be distinguished by how the source material vapors are produced.

In evaporation, the target is heated up to its melting point to release particles of the

source material into the processing chamber [26]. Alternatively, the target material

16



1.1. Plasma processing techniques

may be vaporized using a beam of high-energy electrons or ions [27]. In the case of

magnetron sputtering, the target is eroded by bombardment with energetic ions. In both

evaporation and sputtering, the next step is similar – the released target particles settle

on the substrate. Additionally, if the target particles are ionized, a high electric potential

may be applied to the substrate in order to accelerate the incoming ions and increase

the density of the growing film. This procedure is called substrate biasing, and is further

discussed in section 1.2.

The main advantage of sputtering over evaporation is the higher energy of the released

target particles, used to increase the density of the coating and thereby improve its

properties. Each PVD method sets different requirements for the power converters used

in the plasma process. As an example, in the evaporation process, a simple DC current

source can be applied, while for magnetron sputtering a variety of power supplies are used

routinely in the industry due to the complexity of various applications.

In physical dry etching or plasma cleaning, as mentioned above, the kinetic energy of

the accelerated ions is used to remove layers from the surface. Typically, such a process

uses argon as the working gas. Argon ions available in the plasma are accelerated in a

high electrical field introduced by the bias power supply. The proper adjustment of the

negative voltage amplitude and process gas composition allows for precise control over

the thickness of the layer removed.

A model of a typical process chamber used for magnetron sputtering is shown

schematically in Fig. 2, while a detailed description of the magnetron sputtering process

can be found in monograph [28]. Here only a basic description will be given of the working

environment of a power converter used for plasma processing. To ensure the required

processing conditions and to avoid impurities, plasma processes are usually performed

in a vacuum or a low-pressure environment. For example, in the case of the magnetron

sputtering, after the air is pumped out, the process chamber is filled with an inert gas such

as argon. The power converter, e.g. a Pulsed DC power supply, is connected to the target

(cathode) and to the chamber walls (anode), to provide the necessary energy to ignite

and sustain the plasma discharge. Behind the target, a magnetron is placed to „trap”
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Chapter 1. Introduction

Figure 2. Simplified cross section of plasma chamber for a Physical Vapor Deposition (PVD)
process [20].

electrons in the vicinity of the target and to increase the ionization of the inert gas in this

area. The ionization process initially requires electrons. The electric field generated by

the power supply accelerates the electrons towards the anode, and gas ions towards the

cathode. Collisions of atoms with each other and with the electrons initiate a snowball

process of ionization. When ions hit the target surface, their kinetic energy is transferred

to atoms on the surface. If that energy is sufficient, the atomic bonds are broken and the

target atoms are ejected from the surface. Due to the collisions, secondary electrons are

also emitted from the target. Before reaching the surface on which the film is grown, the

target atoms can be ionized or excited by collisions with plasma particles.

In many cases, a magnetron sputtering process involves using a second power supply

connected to the substrate on which the film is deposited. Depending on whether the

substrate is electrically conductive or not, a DC, Pulsed DC, or RF power supply is used

as the bias source. The application of a negative potential (with respect to the grounded

chamber wall) provides additional kinetic energy to the ionized target material. This

excess energy is beneficial to the density and morphology of the deposited film.
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1.1. Plasma processing techniques

A specific kind of PVD process is that of High Power Impulse Magnetron Sputtering

(HiPIMS). In this process, short (10 − 100 µs) impulses having a very high peak power

(0.5 − 6 MW ) are delivered to a standard magnetron target, while the average power

delivered to the target is kept at a level typical for magnetron sputtering processes (up

to 60 kW ). The high pulse power permits a high ionization of the sputtered material (up

to 90%), and for this reason the method is widely used for the deposition of high-density,

durable industrial coatings [29] including Diamond-Like Carbon films [30], deep trench

filling and TSV structures in the semiconductor industry [31].

1.1.3 Atmospheric Pressure Plasma (APP)

Atmospheric Pressure Plasma (APP) overcomes one of the drawbacks of the above-

described methods – operation in a vacuum. A process that can take place at ambient

pressure eliminates the high cost of a vacuum chamber and its associated components.

However, the difficulty of sustaining a glow discharge under atmospheric pressure

conditions leads to a challenge, namely, the higher voltages required for the gas breakdown

and arcing that occurs between the electrodes. Atmospheric pressure plasma processes

can be classified by their electrode configuration, further discussed in [32]:

• Dielectric Barrier Discharge (DBD),

• Corona Discharge (CD),

• Plasma Jet (PJ) or Plasma Torch (PT).

DBD is generated between two electrodes where at least one is covered by a dielectric

material. Thus, the plasma formed in the working gas fills the whole space between the

positive and the negative electrode. Depending on the operating conditions, including

the working gas composition, applied voltage and the frequency thereof, a filamentary

or glow discharge will dominate. A filamentary discharge is formed by micro-discharges

or streamers that develop on the dielectric layer surface. The dielectric layer plays an

important role, as it limits the discharge current, thus avoiding a spontaneous transition

from a glow discharge to an arc discharge. It is also responsible for the accumulation of

electrons, and therefore for the statistically randomized distribution of streamers. Both
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a) b)

c)

Figure 3. Atmospheric plasma: a) Dielectric Barrier Discharge (DBD), b) Corona Discharge
(CD) and c) Plasma Jet (PJ) [20, 33].

the distance between the electrodes and their geometry depend on the operating conditions

(especially the gas mixture and voltage) and vary from micrometers to a few centimeters.

A CD is a luminous glow around the sharp tip of a conductor, formed by the ionization

of the surrounding gas in a highly non-uniform electric field. It occurs when the potential

gradient at the sharp tip exceeds a threshold value, but is not sufficient to cause a

complete electrical breakdown. CD is unwanted and dangerous phenomenon in high-

voltage systems, but it is used in many industrial applications such as Electrostatic

Precipitator (ESP), which was developed to remove sulfuric acid fumes from a gas stream.

ESPs are used in such processes as the manufacturing of steel, paper and cement, as well

as in ore-processing industries and as combustion sources in power plants for collecting

particulate emissions [34].

Finally, a characteristic feature of PJ and PT is that the plasma is ignited and sustained

within the plasma source, but extends beyond the region where it is generated, and is

launched outside the device in the form of what is known as a “plasma plume”. Despite the

large variety of configurations, almost all plasma jets structurally integrate an electrode
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assembly for the generation of the discharge and a channel through which the working

gas flows and in which the plasma generates and propagates. Usually the channel has

a circular (or round) cross section perpendicular to the direction of the gas flow [33],

although ring-shaped or rectangular geometries are also used. The ionized gas from the

plasma jet is directed onto a substrate a few millimeters downstream. As the temperature

of the ionized gas is low (below 180◦C − 200◦C) it can be used to etch materials such

as plastics or silicon dioxide, as well as in various medical applications including plasma-

assisted tissue coagulation and dissection [35, 36].

Since DBD, CD, and PJ sources all differ in their construction, the voltage and power

needed in them to ignite and sustain the discharge also vary. CD typically requires a

higher voltage of several tens of kilovolts, while DBD typically operates at a lower voltage

and power. In contrast, PJ and PT benefit from a discharge ignition voltage in the range

of those used in magnetron sputtering, below 1 kV .

1.1.4 Plasma systems

As it was stated at the very beginning of chapter 1, plasma processing techniques are used

to manufacture various of every day objects. What has not been properly pointed out

yet, is the complexity of manufacturing processes. The path from the intermediate goods

to the final product - e.g. camera lens or LCD screen - consists of tens or hundreds of

different steps, which mostly requires usage of HPPS. One of the best examples to visualise

this aspect of plasma processing, are semiconductor chips. In fact, design of integrated

circuits is similar to the Printed Circuit Board (PCB), although the dimensions of the

first ones are few order smaller and the amount of layers is significantly higher.

The first step is preparation of silicon substrate. For this purpose, the high purity

polysilicon cylinder is placed inside vacuum chamber. Then, inductive heating coil heats

up part of cylinder up to the (1400◦C), which causes the impurities to gather on the

surface. The heating coil is moved along cylinder, to concentrate impurities at the very

end of cylinder where they are cut off. At last, cylinder is cut into wafers, which are further

covered with thin film of SiO2, for protection from undesired oxidation and contamination.
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Inductive heating, mentioned in this paragraph, is one of many applications of modern

HPPSs.

Next, wafers are subjected to photolithography, etching and doping. The oxidized

silicon wafers are uniformly covered with a photoresist material. Such prepared wafer is

further exposed to the UV light through proper photomask, which stops the UV beam and

allows to transfer complex geometric design onto silicon surface. The exposed areas of the

chip pattern are removed, revealing SiO2 surface below, while areas protected from the UV

irradiation remains intact. Afterwards, exposed SiO2 patterns are etched off during either

chemical or plasma etching process. Remains of photoresist layer are chemically removed

and processed wafer is subjected to further chemical or plasma cleaning. Such prepared

wafer is subjected to oxidation process, to develop an insulating layer, on top of which

a conductive layer of polysilicon is deposited. Next, stack-up is covered with photoresist

material, which is again exposed for the UV irradiation through proper photomask and

etched, to remove deposited polysilicon and insulating oxide layer from desired areas of

wafer. At last, the exposed silicon areas are subjected to the ion implantation process

to dope Si with B or P , and to develop p and n regions respectively. Afterwards, wafer

is subjected to another cycle of oxide layer deposition, applying of the photoresist, UV

irradiation and stripping. Then, to develop contact with underlying layers, the conductive

metallic alloys are deposited. These steps are then repeated few-dozens or few-hundred

times, until stack-up is completed. This stage of manufacturing heavily relies on HPPSs,

which are used to:

• supply UV lasers,

• supply ion sources,

• deposit silicon and metallic layers in PVD process,

• etch semiconductor wafer.

If any of these steps is interrupted, e.g. due to a failure or a unscheduled shutdown of

plasma system, the whole batch of processed wafers is wasted.

Production of semiconductor devices is a great example of a batch system, designed

to process specified amount of devices at once. Other great example of such application
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is manufacturing of Flat Panel Displays (FPD), where a single glass panel - varying from

1300 x 1500mm to 2940 x 3370mm depending on system generation - is processed at once

[18]. The alternate approach for plasma processing is presented by the in-line systems.

In such system, production line is constantly supplied with steady stream of intermediate

good, which is moved along series of vacuum systems, each operating 24/7 and optimized

for distinct type of plasma process.

Typical application of in-line plasma systems is low-E glass manufacturing. At first,

glass panel goes into pressure cleaner to degrease it and remove all pollutions. Next,

it is dried and goes into series of vacuum chambers, each with lower pressure than the

previous one. Such concept is in fact similar to the operation principle of the water

gate. At last, when pressure is decreased to few mTorr, glass goes into target plasma

chamber for sputtering. After deposition of multiple layers of Ti, Ag, TiO, ZnO and

other compounds, glass panel leaves plasma chamber and goes for the quality control.

Same as in the case of semiconductor device manufacturing, each unplanned shutdown

or interruption may deteriorate quality of deposited layer, resulting in high financial and

material losses. In contrast to the batch system, material wastes are not be limited to the

volume of single batch, as production line is constantly supplied with the intermediate

good.

High complexity of plasma processes causes very high complexity of the manufacturing

equipment iself, with a great example of Extreme Ultraviolet (EUV) lithography machine.

As presented in [37, 38], such systems consists of thousands of non-redundant parts, which

implies an extremely high reliability requirements for each component used in it.

1.2 Power supplies for plasma applications

Depending on the application, the maximum average power delivered to plasma ranges

from a few watts (e.g. a plasma jet for wound disinfection in medical applications) to more

than a hundred kilowatts from a single power supply unit (e.g. large-scale glass coating

systems). Moreover, power supplies for industrial plasma material processing applications

differ in their control concept, shape and fundamental frequency of output signal or peak

23



Chapter 1. Introduction

output current, depending on the target application. In this section, main types of HPPSs

and power converter topologies suitable for such applications are discussed.

1.2.1 Taxonomy

There are two main approaches to categorize power supplies for plasma processes: by

their application or by the shape of their output voltage and current. In the first case,

HPPSs are divided into the following groups:

• Bias sources,

• Plasma sources (e.g. magnetron, ion sources).

Bias sources are used to introduce a negative DC offset between the substrate and

the reference electrode, typically the chamber walls at the ground potential, in order

to accelerate ions from the plasma to the substrate. This feature is commonly used to

increase the film density and deposition rate in thin-film growth; to decrease the roughness

of a sputtered film, or to increase the etch depth in semiconductor manufacturing [39–41].

In general, DC or Pulsed DC Bias sources are mainly used where electrically conductive

substrates feature. In such cases, the power converter has to act as a nearly ideal voltage

source, with voltage ripples of less than 1% in order to increase the homogeneity of

the electrical field, which is essential for growing high quality, uniform films. For more

challenging dielectric substrates, it is possible to exploit the plasma’s self-bias property

and introduce a precisely controlled bias voltage with an RF power generator.

Power supplies used as plasma sources (e.g. magnetron sources, arc sources, ion beam

sources, etc.) have to act as a nearly ideal current source. Key features of such power

supplies are their ability to shut down output current in microseconds and to suppress

arcing. The generic root cause of arcing is poisoning – the growth of a dielectric layer

on the target surface or the surface of the biased substrate. As the plasma process

goes on, a thin insulating layer made of a compound of the target material (such as

Al) and the process gas (such as O2) is deposited on the target surface. A dielectric

film is typically sputtered (or removed from the target surface) more slowly than a pure

metal, and accumulates an electric charge. As the electric field across the dielectric film
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increases, any local distortion of the electric field can lead to an uncontrolled discharge –

an arc. Moreover, an untreated arc can seriously damage the target, leading to an abrupt,

unplanned stoppage of the production process for target maintenance.

If power supplies for plasma applications are categorized by the shape of their output

voltage or current, and their fundamental frequency, as in Fig. 4, the following groups

emerge:

1. Direct Current (DC) sources,

2. Pulsed Direct Current (Pulsed DC) sources,

3. Medium Frequency (MF) and Bipolar sources,

4. Radio Frequency (RF) and Very High Frequency (VHF) sources.

DC power supplies have a broad range of applications. They provide a constant,

low-ripple current (in plasma source applications) or voltage (in bias source applications),

and are used for substrate heating, electrostatic chucks for wafer positioning, high-voltage

sources for atmospheric plasma discharges, and in many other applications.

Pulsed DC power supplies are also used as plasma and bias sources. The main difference

between a Pulsed DC and a DC power supply is the ability of a Pulsed DC supply to

perform a fast ON and OFF sequence, so as to produce rectangular waveforms of output

voltage and current. The application of pulsing and a regulated duty cycle is used to

minimize the probability of arcing due to the target poisoning. In a Pulsed DC sputtering

process, a short off-time allows for the neutralization of the positive charge accumulated

on the surface, covered with the dielectric film during the on-time. The efficiency of

mitigating arcing by Pulsed DC can be further increased by the application of a so-called

reverse voltage. The above-mentioned benefits of pulsing and reverse voltage are also

utilized in bias applications of Pulsed DC power supplies.

Another group of power converters for plasma processing applications is that of Medium

Frequency sources. Low-power supplies are used, e.g., for solar panel manufacturing,

while 120 kW generators find application in large-scale systems for architectural glass

coating. The main difference between MF/Bipolar and other types of plasma power
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Figure 4. Main types of High Performance Power Supplies (HPPSs) for plasma processing
[20]. Critical parameters of HPPSs are: Average Output Power (PAV ), Output Voltage (VOUT ),
Pulse Frequency (fPULSE), Amplitude of Reverse Voltage (VREV ), Peak Instantaneous Output
Power (PPEAK), Main Output Frequency (fO) and Output Impedance (ZOUT ).

supplies is their design; they have two independent output terminals, which may or may

not be electrically grounded. Therefore, in the magnetron sputtering applications they

are typically used in a dual magnetron arrangement, where both output terminals are

detached from the electrical ground. Such an electrical configuration results in the target

alternately functioning as cathode and anode, depending on the actual polarization of

each of the power supplies’ output terminals: when one of the outputs is polarized

negatively to perform sputtering, the other one is acting as the anode. After one half-

period, the electrical conditions are reversed, and the first target is now the anode, while

the sputtering process continues on the second target.

The next main difference between Medium Frequency (MF) and Bipoler power supplies

is the shape of output voltage and current. MFs provide an alternating sine-wave output
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signal, while in the case of Bipolar units, the shape of the output signal can be modified

to achieve a rectangular, triangular or trapezoidal waveform. The ability to modify

the current and voltage waveform shape during normal operation, without additional

mechanical changes, makes it possible to manipulate the average plasma ion energy, which

is essential for the deposition of oxygen-based films (e.g. SiOX , ZnOX , GaOX) [42], as

in these applications, too high a kinetic energy of O− ions may result in an undesired

damage to the deposited film [43].

The last major group of power supplies used for plasma processing are RF and VHF

power supplies. In particular, 13.56 MHz and its harmonics are the most typical

operation frequencies reserved for industrial and medical applications. Depending on the

application, RF power can be generated by applying an RF voltage across two parallel

electrodes installed in a vacuum chamber Capacitively Coupled Plasma (CCP) or by

circulating RF currents in a coil mounted on the outside of the vacuum chamber and

separated from the plasma by a dielectric window ICP. Both methods transfer the energy

of the RF electromagnetic wave to the electrons in the plasma to sustain the discharge.

1.2.2 Power converters topologies

Power supplies for plasma processing applications are usually complex, modular systems

with multiple stages of the energy conversion, as presented in Fig. 5. Various types of

power converters may be found suitable to be used in such power supplies but in different

plasma processing applications. Therefore, any comparative study of the basic types

of power converters should take account of the potential usage of these topologies in the

same functional module of the HPPS for the plasma processing application. Therefore, the

following assessment method is proposed – each type of power converter can be identified

as:

• well suitable,

• suitable,

• not suitable,

for following target application:
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• input stage of HPPS for plasma processing,

• interlink stage of HPPS for plasma processing,

• output stage of HPPS for plasma processing.

Figure 5. Simplified block diagram of a typical power supply for plasma processing with energy
flow direction marked [20].

Typical Key Performance Indicators (KPI) used for comparing various designs of input

modules are:

1. Current Total Harmonic Distortion (THDi) on input terminals,

2. Voltage Total Harmonic Distortion (THDu) on input terminals,

3. power factor,

4. efficiency,

5. total cost.

However, in the plasma surface processing applications, these KPI are insufficient, and

two additional indicators have to be defined:

7. main frequency power fluctuations seen at the output of the power supply,

8. immunity for pulsed operating conditions [44].

Indicators 1. - 5. are rather typical for all power electronic equipment, as they are

fundamental for power quality improvement and economic evaluation. However, the strict
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limits on the presence of the mains frequency in the output signal are unique to the

plasma processing. Low-frequency fluctuations disqualify a power supply’s design from

bias applications because these impact the plasma properties, including the ion energy

density, which can lead to a deterioration in the quality of the coating.

A typical design of an input module is a simple bridge rectifier with a unidirectional

boost converter, as presented in [45, 46], although other hard-switching converters (e.g.

interleaved boost converter [47] or a buck converter [48]) can also be successfully utilized.

Moreover, various researchers have proved that resonant converters (e.g. LLC, LCC)

can also be used in such configuration [49], although the design of a wide input range

resonant converter, which is immune to voltage sags and other grid events, is far more

challenging than in the case of a hard-switching topology. Thus, in the scope of a wide-

range operation, a non-inverting buck-boost or Single-Ended Primary Inductor Converter

(SEPIC) topology [50] outperforms other converters, as it can provide either a higher or

a lower voltage on the output terminals, than on input. Although typical buck-boost

or Cuk converters also have similar properties, they invert the output voltage polarity,

which can cause additional design issues. Recently, bridgeless designs (e.g. bridgeless

boost, totem-pole Power Factor Correction (PFC) circuit, bidirectional boost converter,

active bridge [51, 52]) have become increasingly popular in industrial and automotive

applications [53], for being more efficient than bridge-based solutions, achieving rates

of 97.5% − 99% [54, 55]. Moreover, an improvement in efficiency has been proved for

both single-phase and three-phase designs [53, 56]. An active bridge topology stands

out among the above-mentioned designs in terms of KPI 1. and 2., as state-of-the-art

control algorithms (e.g. space vector modulation [57]) permit a significant reduction in

either current or voltage total harmonic distortion. On the other hand, active bridge and

totem-pole designs require far more active components than bridge-based input models.

Various researchers have proved that a single-stage LLC resonant converter [58, 59],

an LCC resonant converter [60, 61], a semi-soft switching converter [62, 63], or a

hard switching converter [46] are well suited as intermediary power conversion systems.

Therefore, these types of power converters could be easily adapted for the purposes of
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forming an interlink for every type of power supply for plasma processing. Although

modular or multilevel converters [64, 65] can also be successfully utilized as an interlink

in any plasma power supply, such power converters are better suited to HV applications,

as using a multilevel converter in a low-voltage source may prove to be sub-optimal in

terms of Design to Cost (DtC) [66] or DfR [67] methodology. However, in some designs,

the input and interlink modules are combined into a single functional module. Then,

performance evaluation should focus on the KPI defined for input modules.

As shown in Fig. 4, almost every power converter topology is applicable at the output

stage of a DC power supply, however no topology is universal, nor is any solution suitable

for every application. Therefore, any decision on the design of a DC power supply

for plasma processing should be supported with a detailed analysis of the functional

requirements and the power supply application. As an example, a resonant converter

(e.g. LLC or LCC) is a good choice for a highly efficient device with a rather narrow

linear control range, as in the case of a power supply for resistive heating in epitaxial

crystal growth. On the other hand, it would perform poorly as a plasma source with a

wide range of linear output voltage and current regulation. For the same reason, resonant

converters are inadequate for bias power supplies, because such a topology is not optimal

for idle work, typical of bias applications. The bias power supplies usually operate with

a high output voltage but very low current.

As in the case of an interlink, multilevel converters are a good choice for a high-voltage

application (e.g. CD, DBD), while using such a topology in a low-voltage application

(e.g. arc sputtering, arc welding [46, 64]) could be simply inadequate. Here, a single-

stage hard-switching power converter is often an appropriate solution [68].

In the case of a Pulsed DC power supply, the device architecture has to be able to shut

off the voltage and current within microseconds to achieve a „rectangular” signal shape.

Therefore, the output stage of such a power supply needs to have either a very low output

capacitance [69] or the ability to short both output terminals with a controlled electronic

switch [70, 71]; this favors topologies such as, e.g., a synchronous buck converter. For
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better clarification, a comparison of the output stages of a simple DC and a Pulsed DC

power supply for plasma processing is presented in Fig. 6.

a) b)

Figure 6. Comparison of output stage for a Direct Current (DC) plasma source for magnetron
sputtering [72] (a) and a Pulsed Direct Current (Pulsed DC) bias source for a Chemical Vapor
Deposition (CVD) system [71] (b). A typical configuration of the electronic switch shorting
output terminals is marked with a red dashed line [20].

Sample voltage and current waveforms of a DC and a Pulsed DC power supply are

presented in Fig. 7. To achieve such a high di/dt and du/dt slope, the power supply has

to be able to extract the energy stored in the parasitic inductance of the cables connecting

it to the cathode (the sputtering target). For this purpose, a slightly negative voltage

may be introduced at the end of each pulse [73], as presented in Fig. 7b).

a) b)

Figure 7. Output voltage (yellow, upper) and current (blue, lower) of 20 kW bias power supply
in a Direct Current (DC) mode a) and Pulsed Direct Current (Pulsed DC) mode b). Timescale
- 50 µs/div, channel 1 - 200 V/div, channel 3 - 5 A/div [20]. Black line is a ground level (0 V ).

The choices become much more limited for Bipolar and MF supplies, or Pulsed DC

supplies with Reverse Voltage, since such devices:

• need to be able to operate with both output terminals separated from the electric

ground,
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• need to deliver both positive and negative voltage between terminals.

Therefore, transformer-based power converters, half-bridge converters, full-bridge con-

verters and multilevel converters perform better in such applications, as has been clearly

demonstrated by various researchers – [59, 74–77]. If necessary, Reverse Voltage can be

also introduced by interrupting the current flowing through the choke, as is presented in

[78, 79]. Unfortunately, such a solution has a significant disadvantage – the amplitude

of the Reverse Voltage is a product of the current flowing through the choke, which is

dependent on the load impedance and on-time, and is therefore uncontrolled. Here, a

transformer-based design or multilevel converter makes it possible to achieve an easily

controlled, rectangular shape of reverse voltage, as shown in Fig. 8. Examples of typical

solutions for the output stage of Bipolar or Pulsed DC power supplies with Reverse voltage

are presented in Fig. 9.

Figure 8. Output voltage (yellow, upper) and current (blue, lower) of 20 kW bias Pulsed
Direct Current (Pulsed DC) power supply with Reverse. Timescale - 10 µs/div, channel 3 -
200 V/div [20].

In the case of HiPIMS, the power supply has to deliver extremely high power

to the cathode in a very short pulse. For such a high current and voltage rating

(approximately 1000 A and 2000 V ), multilevel and modular converters seem to be the

best choice, as they make it possible to keep the voltage, current, and power rating across

either electronic switches and passive components at a reasonable level. Moreover, a

multilevel and modular approach allows the use of mature, proven components rather

than experimental technology, which is critical from the point of view of reliability-

oriented design. In an HiPIMS application, a cascaded connection of multiple isolated
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a) b)

Figure 9. Comparison of output stage for Pulsed Direct Current (Pulsed DC) plasma source
with reverse voltage a) and Bipolar plasma source [74] b). There are two typical configurations
of output terminals for power supplies with Reverse voltage: A−B, marked with black-red line
[77] and A− C, marked with black-green line [20, 75].

DC sources (e.g. a cascaded H-Bridge [74]) is the best solution, as it allows for a wide-

span output voltage/current control and a sharp voltage slope formation, essential for

plasma processing. A similar approach is presented in [80], where a cascaded connection

of multiple buck converters was utilized to develop a pulse power supply for high-energy

lasers.

Last but not least, due to the very high operating frequency of RF power supplies

(0.4 − 200 MHz) only soft- or semi-soft switching power converters can be successfully

employed. Typical power amplifier classes suitable for plasma processing applications are

AB, D, DE, E, F−1, although the AB class is rarely seen nowadays due to its rather

low efficiency (up to 70%) [81–85]. In contrast, the rest of the above-mentioned power

amplifier classes allow for nearly 95% efficiency while maintaining satisfactory spectral

purity of the output voltage waveform. As was stated above, a key feature of every power

supply for plasma processing applications is their ability to ignite the plasma. In the case

of RF and VHF power supplies, to fulfill the above requirement, the voltage amplifier

has to be able to withstand operating under a heavily mismatched load, since the process

chamber represents an open circuit before plasma ignition. Therefore, the typical Voltage

Standing Wave Ratio (VSWR) for this type of power supply is specified as being from
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∼ 2.62 for nominal operating conditions up to ∼ 25 for plasma ignition conditions, and

must be achieved with limited power in a short time period. The power converters most

commonly used in the output stage of RF and VHF power supplies are presented in Fig.

10.

a) b)

c)

Figure 10. Typical resonant converters used in Radio Frequency (RF) power supplies for
plasma processing [86] (a) class D [84], (b) class DE (modified D) [83] and (c) class E amplifier
[87].

1.3 Conclusions

Analysis presented in this chapter shows variety of plasma processing techniques, and their

applications in modern industry. Such broad scope of processes simply can not be covered

with only one type of power supply. Thus, HPPSs are in a fact a broad family of diverse

power converters, starting from simple hard-switching converters, up to sophisticated high

frequency amplifiers. Although they have a very distinct differences in their design, most

of HPPSs are modular devices, with 2 or more levels of power conversion. Comparative

evaluation and KPI-based analysis of common power converter topologies shows, which

power converters can be considered as preferable for certain HPPSs. Next, many of HPPSs

have to fulfill a very unique requirements, resulting from operation in plasma system - e.g.

ability to withstand and suppress arc, supporting a very high du/dt at output voltage,
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ability to withstand high VSWR and others. All these aspects indicates that HPPSs are

extremely complex devices, consisting of multiple modules or critical components. Last

but not least, increasing demands on power density of modern HPPSs drives their design

to the limits.

Next, presented examples bring up a typical operating profiles, for which HPPSs

are subjected to.In the case of batch systems, typical for e.g. semiconductor device

manufacturing or flat panel display industry, HPPSs are subjected to severe power cycling,

related to repetitive ON and OFF conditions, caused by repeating plasma process and

technological breaks required to swap the batch. In contrast, in the case of in-line systems,

HPPSs operates with nominal power for almost all the time.

At last, discussed examples production processes, showed not only great a complexity of

a plasma processing techniques, but also their susceptibility for changes. Any malfunction

or undesired shutdown of HPPS may deteriorate quality of processed layers, resulting in

high financial losses, related to waste of processed intermediate good and time, spent on

restoration of production line. This explains high reliability and quality requirements for

all equipment used in plasma processing industry - especially for HPPSs.

All of these aspects explains the motivation behind the research presented in this paper,

focused on increasing reliability of High Performance Power Supplies.
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Chapter 2

Reliability improvement of High
Performance Power Supplies
(HPPSs)

The simplest definition of the reliability is a probability, that a device used in certain

operating conditions, will keep its functionalities over a specified time [88]. Based on this

definition, the reliability improvement of the HPPSs may be fulfilled by:

1. the fault-tolerant design, which allows to maintain main functionalities despite fatal

failure of either single or multiple critical components,

2. the condition monitoring or Remaining Useful Lifetime (RUL) estimation, which

allows to limit a probability of failure thanks to the preventive maintenance,

3. the reliability modelling, which ensures that failures will occur after desired time

(e.g. a warranty period) or allows to introduce proper preventive maintenance

strategy,

4. the reliability oriented design, which ensures that designed HPPS will meet desired

reliability goals.
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2.1 Cross comparison of different strategies for reli-
ability improvement

The fault tolerant design concept is based on two foundations - the first is the redundancy

of critical circuits, and the second one is the detection of faulty condition. Although

redundancy may be introduced on switch-level, leg-level, module-level or system-level

as depicted in Fig. 11, in every case the fault-handling algorithm is the same: after

failure detection, power supply changes configuration of switches to isolate damaged

semiconductor device, and then restores operation.

Figure 11. State-of-the-art fault-tolerant methodology chart - simplified view [89].

Although the fault-tolerant design is a very interesting concept, which is currently

introduced for various applications, from renewable energy sources [90, 91], through elec-

tric propulsion systems in automotive industry [92], up to power electronic transformers

[93] for grid applications, it may not be the best strategy for the HPPSs for plasma

processing. The main disadvantage of any fault-tolerant design lies in its very foundation

- a redundancy of critical circuits. This would not only increase a unit cost of HPPS, but

also its size, which opposes to the market demands. Simply, power supplies for plasma

processing has to be as small and as cheap as possible. At last, it is not sure if the

fault-tolerant design is indeed a solution for problem stated in section 1.3. The fault-

handling itself, which is an identification of a fault condition and reconfiguration of the

power converter requires time, during which the energy flow to the plasma chamber will

be distorted, which still may deteriorate quality of the processed layer. Thus, the fault-

tolerant design may not be appropriate for certain applications, which are very susceptible

for any changes or instabilities of process conditions, like semiconductor manufacturing.

In the case of either the condition monitoring or the RUL estimation, a overall

reliability of the HPPS is increased thanks to detection of a progressing degradation,
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which allows to prevent a failure. The reliability improvement strategy may be based on

actual measurements of so-called health indicators [94, 95], simulation study and advanced

electrothermal modelling or mix of both [96]. Depending on the chosen strategy, the State

of Health (SoH) estimation may be performed on-line, if health indicators are recorded

during normal operation of the power converter or off-line, if condition monitoring requires

stopping the machine and performing of a dedicated check-up routine. Alternatively,

SoH estimation methods may be categorized by the origin of data processing. The SoH

estimation algorithm may be implemented in power converter itself [94, 97], or calculations

may be performed on dedicated server, as presented in [98, 99]. In the second case, one

of approaches worth mentioning is condition monitoring based on the machine learning

[100, 101].

Although the SoH assessment for purposes of either the condition monitoring or the

RUL estimation is a very interesting concept, it has some fundamental limitations. The

first challenge related to the practical implementation of the SoH assessment, is the variety

of critical components used in modern power converters. Power semiconductor devices,

capacitors, integrated circuits, magnetic components, etc. - each of these components has

its own unique degradation mechanisms. Thus, not only each type of critical component

has its own health indicators, but also requires proper measurement method for the SoH

assessment. Beside the variety of critical components, the number of critical components

is also a challenge for practical implementation of condition monitoring procedures.

As presented in [102, 103], useful health indicators monitoring often requires complex

measurement or driver circuit. Although many researchers presented successful concepts

of condition monitoring techniques for single functional modules (e.g. DC-link [104],

Insulated Gate Bipolar Transistor (IGBT) module [98]), HPPS may consist of dozens of

discrete semiconductor devices. This brings up concerns about scaling up of the SoH

assessment strategy, especially for a very compact designs, typical for modern HPPS.

Moreover, details of plasma process parameters, like power delivered to the plasma

chamber, current, voltage, arc rate, operating frequency, Pulse On-time (tON), Pulse

Off-time (tOFF ), etc. are usually a strictly protected know-how. Thus, the condition
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monitoring which would require connecting with external server, brings up concerns about

a cyber-security and safety of recorded data [105, 106].

The DfR is widely used to increase the reliability of either complex power electronic

systems [107] or simple single-stage converters [108]. Similarly to the reliability modelling,

it is based on the idea that overall reliability of the power converter can be estimated for

predefined set of stressors, based on known reliability models for either functional modules

(e.g. driver circuit) or critical components (e.g. power semiconductor device, capacitor).

The distinct difference between these two concepts is their scope. The reliability modelling

is used to estimate the reliability (e.g. failure rate, useful lifetime) of critical components,

functional modules and whole power converters for given operating conditions, based on

defined probabilistic models. In contrast, the DfR defines not only probabilistic models

for reliability modelling, but also:

1. design rules,

2. guidelines for stress level estimation,

3. guidelines for useful lifetime calculation,

4. test procedures (e.g. for detection of possible design flaws),

5. accelerated lifetime test procedures (e.g. for reliability demonstration).

Thus, DfR (also known as reliability oriented design) is significantly more holistic

approach, than the reliability modelling, as it covers multiple aspects of reliability

engineering.

As depicted in Fig. 12, concepts of the DfR and the reliability modelling partially

overlap. Thus, they share some of advantages and disadvantages in comparison to other

strategies for reliability improvement. The main challenge with implementation of either

of methods in real-life engineering workflow is accuracy and number of statistical models

used in the reliability assessment, which may cause serious under- or overestimation. As it

was mentioned earlier, each critical component of modern power converter is subjected to

its own degradation and failure mechanisms. Moreover, often it is possible to distinct a few
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2.1. Cross comparison of different strategies for reliability improvement

Figure 12. Graphical representation of the Design for Reliability (DfR) concept in comparison
to the Reliability Modelling approach.

different failure modes, accelerated with different stressors, for each critical component.

Thus, proper reliability assessment would require usage of multiple probabilistic models,

each for separate failure mode. On the other hand, number of the same critical components

(e.g. total amount of capacitors or power semiconductor devices) is not challenging at all,

as proper calculations can be easily repeated. Next advantage of either the DfR or the

reliability modelling strategy is easy scalability for modular devices, like HPPSs. Based on

presented analysis, the DfR concept was found as the most suitable strategy for reliability

improvement of HPPSs. Thus, a proper DfR procedure - suitable for needs of TRUMPF

Huettinger Sp. z o.o. (TRUMPF) - was established.
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2.2 Fundamentals of the Design for Reliability (DfR)

As presented at the beginning of Chapter 2, reliability is in fact a probability of success,

defined as: correct operation of device after certain time, for given operating conditions.

Thus, it is very common to use probabilistic and statistics measures to denote reliability.

Either single device (e.g. semiconductor chip), functional module (e.g. control board)

or whole system (e.g. power converter) might fail at any time. Thus, reliability has

the characteristics of the continuous random variable. Alternate approach is to consider

part/module/system as defective or non-defective. In such case, random variable – the

reliability – can take only one of the two values. In this case, reliability is considered as a

discrete random variable, similarly to probability of a coin toss. Thus, the probability of

failure can be expressed with a probability density function or probability mass function,

respectively to chosen approach. However, it is far more common to treat reliability

as a continuous random variable, than discrete. Therefore, the mathematical apparatus

typically used to denote probability are:

• Probability Density Function (PDF) - denoted as f(x)

• Cumulative Density Function (CDF) - denoted as F (x)

In the case of the reliability modeling, the PDF represents the relative frequency of

failures as a function of time. By the definition, the CDF is the cumulative value of

the PDF, thus in reliability modeling it represents the absolute probability of failure

over time. Therefore, it is also known as the Unreliability Function (Q(t)), as it is used

to measure the probability that part/module/system will fail before certain time. The

graphical representation of the relationship between PDF and CDF is depicted in Fig.

13. As the probability can not be higher than 1, the Reliability Function (R(t)) can be

defined with Eq. (1):

R(t) = 1−Q(t) = 1−
ˆ τ

0

f(t)dt =

ˆ ∞

τ

f(t)dt (1)
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The Failure Rate (FR), which is also denoted as λ(t), function is defined as the ratio of

the PDF and the R(t):

λ(t) =
f(t)

R(t)
(2)

Such approach, allows to bring down the abstract concept of the Reliability or the

Reliability Modelling to the simple fitting a proper mathematical distribution to the

observed data. Such mathematical distributions, which are commonly used in reliability

engineering, are often called a Lifetime Distributions (LD), and they are listed below

[109]:

• the Exponential Distribution,

• the 2- or 3- parameter Weibull Distribution,

• the Multimodal Weibull Distribution,

• the Normal Distribution,

• the Lognormal Distribution,

• the Gamma Distribution,

• the Logistic Distribution,

• the Loglogistic Distribution,

• the Gumbel Distribution.

However, in practical discussions over reliability of either single components, modules

or whole systems, the Bathtub Curve concept is used far more often than complex LD

analysis. The Bathtub Curve is a simplified, graphical representation how the λ(t) changes

over time. As depicted in Fig. 14 it can be divided into three regions:

1. the Infant Mortality or Intrinsic Failure region, where failures are mostly caused

by internal defects or impurities, and they are strictly related to the quality of the

manufacturing process,

2. the Useful Lifetime or Random Failure region, where failure rate is relatively

constant, and failures are the result of a strictly random phenomena,

3. the Fatigue Failure or Extrinsic Failure region, where probability of failure

significantly increases due to progressing wear-out of the device.
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a)

b)

Figure 13. Examples of Probability Density Function (PDF) a), and Cumulative Density
Function (CDF) b) of the Weibull model depicting fatigue mechanism of solder joint, in
dependence of number of thermal cycles performed by this joint. The corresponding value
of surface beneath PDF curve was marked on the CDF plot.
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Figure 14. The Bathtub Curve used for graphical representation of failure rate changes over
time [110].

In general, quality issues - e.g. the famous self-ignition of lithium-ion batteries in

smartphones [111] - are not in the scope of the reliability engineering, and it is expected

that all Infant Mortality failures are properly screened out from general population thanks

to extensive in-house testing and thorough quality gates. Thus, the Bathtub Curve

concept allows to simplify reliability modelling to two questions:

1. „How high will be the Failure Rate?” and,

2. „How long the Failure Rate will remain constant?”.

Thanks to the assumption that the FR shall be relatively constant for certain period, it is

possible to use the Exponential Distribution for the reliability modeling. As presented in

the next paragraph, this greatly simplifies calculations required for reliability assessment.

The second question in fact defines so-called the Useful Lifetime (UL) - the time of

operation in certain conditions, after which device should be replaced. Although other

definitions of useful lifetime are also possible, the most common approach is to assume

that End of Life (EoL) is when degradation initiates, and therefore the wear-out failures

may occur.

Typically, the Failure Rate (λ(t)) is denoted in Failures In Time (FIT) - the amount

of failures per 1 billion (109) hours of operation. This approach is very common across
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manufacturers of power electronics components, thanks to its simplicity - the target λ(t)

calculation is brought to a simple multiplication of Base Failure Rate (λ0) and proper

correction factors, each for different stressor. A great example of such approach is a

λ(t) estimation for foil or ceramic capacitors [112, 113], for which both Blocking Voltage

Correction Factor (πV ) and Operating Temperature Correction Factor (πT ) have to be

taken into account, as presented in Eq. (3). Practical example of such calculations is

presented in Section 4.1.

λ = λ0 · πT · πV (3)

Other parameters, which are often used to quantify reliability of repairable and non-

repairable devices during their UL are the Mean Time Between Failures (MTBF) and the

Mean Time To Failure (MTTF). Both MTBF and MTTF are usually denoted in hours

(h) or years (y). Moreover, thanks to properties of the Exponential Distribution, MTBF

or MTTF can be easily converted into the λ(t), with Eq. (4):

λ =
1

MTBF
(4)

The alternate, and yet very popular approach is estimation of the Annual Failure Rate

(AFR). However, there are no single definition of the AFR, and this acronym is also used

for the Annualized Failure Rate or Average Failure Rate, thus various manufacturers may

use different strategy to calculate its value [114]. Examples of various formulas used for

AFR estimation are presented in Eqs. (5) - (12).

AFR1 =
Total number of failures in time interval (T1− T2)

Total cumulative working time in interval (T1− T2)
(5)

AFR2 =
Total number of failures in 1 year

Total working time accumulated in 1 year
(6)

AFR3 =
Total number of failures in last 12 moths

Total installed base of devices
(7)

AFR4 =
Number of failures in 12 consecutive months

Cumulative installed base at the end of the same 12 months
(8)

AFR5 = 100 · 12
m

· Number of failures in m consecutive months

Cumulative installed base at the end of the same m months
(9)
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AFR6 = Ef ·
Total number of failures in m months

Total working time accumulated in m months
(10)

AFR7 =
8766

MTBF
(11)

AFR8 = 1− e
−8766
MTBF (12)

In contrast to the Failure Rate (λ(t)), the UL may be expressed in time units (e.g.

hours or years), as well as amount of cycles (e.g. thermal, mechanical or read-write),

depending on the physics of the dominant degradation mechanism. Similar to the AFR,

various manufacturers have different approach for identification of the UL. As an example,

for IGBT modules, Infineon defines the useful lifetime based on the ALT results, as a time

until 5% of population will reach the EoL criteria, indicating degradation of the device.

In contrast to the IGBT modules, Infineon uses the 1%, 5% or 10% threshold for discrete

devices [115]. Other common approach is to use the mean value of the LD, identified

based on the ALT results. The graphical comparison between these criteria are depicted

in Fig. 15, where the PDF and corresponding the CDF for example ALT results are

given. As presented, the UL is heavily dependant on the approach or the strategy used

for calculations. This discussion shows the one of most challenging obstacles related to

the DfR methodology - lack of the well-standardized, easy-accessible reliability data.

As it was mentioned earlier, the DfR is based on the idea that overall reliability of

any power converter, or power electronic functional module, can be estimated for a pre-

defined set of stressors, based on known reliability models of critical components used

in this converter or module. Moreover, analysis of the Bathtub Curve indicates, that

failure modes for each critical component can be divided into three groups: the Intrinsic

Failures, the Random Failures and the Extrinsic or the Wear-out Failures. Thus, the

second foundation of the DfR is a vast knowledge about critical components, failure modes

and degradation mechanisms typical for these critical components and their reliability

models. Closer analysis of a cross-comparison of typical failure modes, stress functions

and reliability models for power semiconductor devices, presented in Fig. 1, reveals the

next challenge related with the practical implementation of the DfR into engineering

47



Chapter 2. Reliability improvement of High Performance Power Supplies (HPPSs)

a)

b)

Figure 15. The Probability Density Function (PDF) a), and the Cumulative Density Function
(CDF) of the example Weibull distribution, depicting probability of failure of solder joint in
dependence of number of thermal cycles performed by this joint. 1%, 5%, 10% and mean value
of distribution are marked with dashed black lines.
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workflow - multiplicity of reliability models. This aspect is especially challenging, as

there are numerous types of critical components in the HPPS, such as:

• power semiconductor devices,

• integrated circuits (e.g. FLASH memory, operational amplifier, analog-to-digital

converter, etc.)

• capacitors,

• magnetic components (e.g. chokes, inductors and transformers),

• solder joints,

• relays and breakers,

• mechanical components (e.g. connectors, terminals),

• and many others.

And for each type of critical component, a list of stressors, failure mechanisms and

reliability models, similar to the example given in Tab. 1, can be prepared. Repetitive

Short Circuit Conditions (RSCC) and how they affect on degradation mechanisms in

power MOSFETs are discussed in [116, 117].
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Table 1. Failure modes and degradation mechanisms suitable for power MOSFETs.

Type Failure Mode Stressors Ref.

Intrisic
Stacking Fault (SF) RSCC IDS [118, 119]
Hot Carrier Injection (HCI) VGS VDS TJ [120]
Time-Dependent Dielectric Breakdown
(TDDB) VGS VDS TJ [121, 122]

Random
Self turn-on, Activation of parasitic BJT du/dt, TJ [123]
Single Event Effects (SEE) VDS, TJ [124]
TDDB VGS [121, 122]

Extrinsic

Electromigration IDS, TJ [125]
Solder joint fatigue IDS, TJ , ∆TJ [126]
Bond wire lift-off IDS, TJ , ∆TJ [127]
Bond wire heel-cracking IDS, TJ , ∆TJ [128]
Solder delamination TJ , ∆TJ [129, 130]
Brittle cracking TJ , ∆TJ [131]
Aluminum reconstruction IDS, TJ [132]
HCI VGS VDS TJ [120, 133]
TDDB VGS VDS TJ [134, 135]
Avalanche Gate Breakdown (AGB) VDS [121, 133]
Corrosion VGS VDS TJ [136]
Thermal runaway RSCC [137, 138]

The reliability model parameters, which are defined for each failure mode separately,

are unique for each component, as they depend on the structure (e.g. thickness and length

of wire bonds) and manufacturing process (e.g. cooling ramp) of the critical component

itself. Thus, the reliability model prepared for one component, e.g. power MOSFET from

manufacturer A, may not be adequate for counterpart from manufacturer B. In practice,

it means that to prepare reliability model for each new component, multiple ALTs have

to be prepared, for each failure or degradation mode separately, which makes reliability

engineering very cost extensive research. This aspects is further discussed in chapter 3.

Unfortunately, such detailed data as PDFs, ALT reports or reliability models are rarely

provided by manufacturers.
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2.3 Modified Design for Reliability (DfR) procedure
for short lifespan projects

Typically, the DfR procedure consists of the following steps [139, 140]:

1. mission profile and environmental parameters definition,

2. system-level mission profile evaluation,

3. circuit modelling,

4. stressors levels evaluation for critical components,

5. reliability evaluation for critical components,

6. system-level reliability assessment.

As it is presented in Fig. 16, there are two approaches for DfR: either chosen

topology is released for design phase after successful reliability assessment [139] or designed

functional module is released for production after successful reliability assessment [140].

Unfortunately, both procedures are extremely time-consuming, as they base on complex

simulation studies and electro-thermal modeling. Thus, the classical DfR concept may

not be suitable for projects with a short lifespan or Time To Market (TTM). As an

example, a typical TTM of moderate complexity project in the automotive industry is

between 40 and 70 months [141], while in some highly specialized applications (e.g. plasma

processing industry) first functional prototype has to be delivered within 6 − 15 months

from agreement on technical specification. For such specialized applications a modified

DfR procedure (see Fig. 17) was proposed, which consists of the following steps:

1. boundary condition definition,

2. simulation stage,

3. design stage and initial reliability evaluation,

4. Proof of Concept (PoC) laboratory testing,
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5. Reliability Growth,

6. Reliability Demonstration,

7. Reliability Maintenance.

The main difference between the classical and the proposed approaches is a higher

integration of DfR procedure with the engineering workflow, allowing to get either Proof

of Concept (PoC) or fully functional prototype available sooner. Thus, the modified

procedure is rather focused on the laboratory testing, than on the extended electro-

thermal simulation study.

a)

b)

Figure 16. The typical Design for Reliability (DfR) procedure presented in respect to the
design process workflow, if the DfR procedure is performed before electrical and mechanical
design a), if the DfR procedure is performed in parallel to electrical design b). Steps of the
typical DfR procedure and reliability growth are marked with green color [110].
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Figure 17. The modified Design for Reliability (DfR) (green blocks) procedure presented in
respect to the design process workflow [110].

The first stage of both the modified and the classical DfR procedure is similar -

boundary conditions have to be defined. In this step, the system designer has to define not

only the expected mission profile or environmental parameters (e.g. humidity, altitude,

ambient temperature, presence of technical gases) but also the functional requirements

of a power converter, desired efficiency, desired overall cost, or reliability goals. This

step is the very foundation of the whole designing process as operating conditions define

stress levels (e.g. humidity), which directly affects on the corresponding degradation

mechanisms (e.g. corrosion [136]).

The next step is the simulation study. In the classical approach, the goal of the circuit

modeling and the comprehensive electrothermal simulations is the accurate estimation

of stress levels, like maximum junction temperature swing per cycle. In contrast, the

main goal of the simulation study in the proposed DfR procedure is the selection of the

most promising topology, which allows for compliance with all functional requirements

(e.g. minimum efficiency, ripples, etc.). Secondary goals of the simulation stage are the

selection of passive and active components (e.g. capacitors, power semiconductors) and

the rough stress level estimation. At this step, reliability evaluation is focused rather

on verification if all critical components operate within Safe Operating Area (SOA)
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than MTBF calculation. Thus, if electrical or electro-thermal model are not available,

simulation study can be performed based on the ideal components. Then, concept of

analysed module or power converter is released for the electrical and mechanical design.

In the proposed DfR methodology, the first reliability assessment is performed

simultaneously to the design process of a very first prototype of the power converter.

For this purpose, stress levels can be taken either from the rough estimation performed in

the previous step, or they can be assessed based on proper electrical and electro-thermal

simulations which include assumed mission profile or worst-case operating conditions [107].

Then, simulation results are applied to reliability models of each critical component to

estimate its UL. At last, the overall reliability of the designed circuit can be estimated as

superimpose of particular components reliability, based on the Reliability Block Diagram

(RBD) [142], the Markov Diagram (MD) [143], the Fault-Tree Analysis (FTA) [144]

or other assessment method. The paralleling of the reliability assessment and design

procedures (e.g. mechanical design, electrical schematic preparation, PCB routing, etc.)

allows for significant time-saving and reduces risks related to the inaccuracy of any

electrical- or electro-thermal simulation study. As an example, if stress levels would be

significantly underestimated due to insufficient model accuracy, the sooner the prototype

will be manufactured, the sooner this issue will come up and the higher chances are that

problem will not affect on assumed delivery date. Moreover, if the reliability assessment

suggests that reliability goals, defined at the very first stage of discussed modified DfR

procedure, may not be fulfilled, it is possible to adjust the design properly or propose

countermeasures.

The main purpose of the PoC, the first prototype of the newly developed power

converter, is qualification testing of chosen topology, to verify if all functional requirements

are fulfilled and to detect most of the design flaws. For this purpose, all key signals and

stressors (e.g. voltage and current waveforms, temperatures) are measured and compared

with simulation results. If measured stress levels are similar to values estimated during

the simulation stage, it is expected that reliability goals will be fulfilled. If there would be

a discrepancy between real-life measurements and estimated values, proper adjustment
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of MTBF calculations should be performed, to verify if reliability goals are still met. In

practice, measurement of certain stressors may be quite tricky, due to very limited access

to critical component, as an example:

• junction temperature of encapsulated power semiconductor devices,

• working current of each semiconductor device in a multichip module,

• ripple current of capacitor bank,

• etc.

Unfortunately, such measurements may require heavy interference into the tested circuit,

which may affect on the performance of tested power supply or measurement accuracy.

The next step in this process is the iterative improvement of developed power supply,

called also the Reliability Growth. This stage covers a wide span of test procedures

designed to push power converter to limits and mark its weakest links. Typical tests

defined for this step are e.g. the Multi-Stressor Test (MST), the Overload Test, the

Highly-Accelerated Life Test (HALT), the Highly-Accelerated Stress Test (HAST), the

Step Stress Test (SST). Each detected malfunction is immediately analyzed to determine

and remove the root cause - only then the test procedure is restored. Thus, this step ends

with a verified, well-tested, and bug-free final design.

The last stage of the DfR procedure is the Reliability Demonstration of a final product,

to verify if assumed reliability goals are truly fulfilled. It is confirmed based on proper

ALT, which not only introduces high-stress conditions for all critical components in the

tested module or HPPS but also - mimics target operating conditions. Afterwards, the

final product is released for a mass production and stops being the object of interest of

Research and Development department.

Although the DfR procedure ends with the Reliability Demonstration from the product

development point of view, it is only the beginning of HPPS lifecycle, during which

many challenges have to be overcome. To address these challenges, the additional step

of DfR procedure is proposed - the Reliability Maintenance, which focus on ensuring

that reliability goals will be fulfilled for all manufactured units, independently to the
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production batch, or time and place of assembly. Thus, this step partially overlaps with

the Quality Control concept. The very fundamentals of the Reliability Maintenance are:

• definition of Quality Gates or Start-Up procedures, which ensure that field reliability

of HPPS will not be compromised by Infant Mortality failures,

• monitoring of field reliability data (e.g. λ(t), AFR) and customer feedback, in order

to confirm if reliability goals are fulfilled,

• if necessary, preparation of the On-going Reliability Test (ORT) - the ALT of HPPS

from different batches or production lines, in order to confirm that reliability goals

are fulfilled for mass produced HPPS,

• component obsolescence management and obsoletes counterparts qualification, to

ensure that any change in design will not negatively affect reliability of the HPPS.

Reliability Maintenance is also a key difference between modified and traditional DfR

procedure.

2.4 Conclusions

Discussion presented in this chapter shows that DfR is the most suitable approach

for reliability improvement of HPPSs for plasma processing. Moreover, mathematical

apparatus presented in this paper allows to precisely define reliability criteria for HPPSs,

which is essential for reliability-oriented design. At last, definition and critical evaluation

of DfR procedure shows that traditional approach is not suitable for short lifespan or short

Time To Market (TTM) projects. To address these challenges, a modified DfR procedure

was proposed.

Next, analysis presented in this chapter allows to distinguish main challenges related

to the practical side of the reliability-oriented design:

• lack of standardization of the reliability data provided by manufacturers - if any

reliability data are given,

• lack of easy-accessible reliability models or reliability data for critical components,

which could be further used in component-level or system-level reliability assessment

of modern HPPS,
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• lack of easy-accessible electrical or electro-thermal models of semiconductor devices,

which could be further used in simulation study of modern HPPSs,

• accuracy and reproducibility of measurement techniques, used for stress level

estimation for critical components operating in fully assembled power supply, which

is essential for laboratory testing of PoC and further versions of newly developed

HPPS,

• lack of industry-friendly, simplified test procedures for reliability-oriented compar-

ative testing, for purposes of the Reliability Maintenance.

These technical challenges have to be overcome in order to successfully implement

proposed DfR procedure into any engineering workflow. Thus, following tasks and work

packages can be identified:

1. Development of reliability models for each critical component used in the modern

HPPS.

2. Development of industry-friendly, cost-efficient approach for preparation of the

reliability model for each critical component used in the modern HPPS.

3. Development of industry-friendly, cost-efficient approach for preparation of electrical

or electro-thermal models of semiconductor devices used in modern HPPSs.

4. Development of dedicated tools and measurement procedures, to ensure that during

laboratory testing of HPPS, key stressors are estimated with sufficient accuracy,

repeatability and reproducibility for each critical component.

5. Development of industry-friendly, cost-efficient methods for simplified accelerated

lifetime testing, for purpose of reliability-oriented comparative study of counterparts

of critical components used in the modern HPPS.

However, all of these work packages can not be covered in single PhD thesis. Thus, further

analysis was required to define priorities on them. Statistical studies suggests that over

21% failures of power electronic systems for renewable energy is related to the power

semiconductor devices [145]. Although there was no similar survey among manufacturers
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of power converters for plasma processing applications, it is expected that the power

semiconductor devices are the root-cause of over 41.2% of HPPS failures. Therefore,

actions focused on this type of critical component shall have the highest impact on the

overall reliability improvement of the modern HPPSs.

Whus, to address these challenges, a research over development of the reliability model

for SiC power MOSFET in SOT − 227B housing was initiated. Investigation presented

in this thesis focuses not only on the identification of the reliability model parameters,

but also answers the question how to do it in industry-friendly, cost-efficient manner.

Such reliability model can be further used for the reliability evaluation in proposed DfR

procedure, by means of e.g.:

• Useful Lifetime (UL) estimation,

• Failure Rate (λ(t)) estimation,

• Mean Time Between Failures (MTBF) or Mean Time To Failure (MTTF) estima-

tion.

The detailed description of this study is presented in the next chapter.
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Chapter 3

Reliability modelling of SiC power
MOSFET

As presented in chapter 2, encapsulated SiC power MOSFETs are subjected to multiple

failure or degradation mechanism, but not all of them are really in the scope of the

reliability-oriented design strategy. The Infant Mortality failure modes are strictly related

to the quality of the manufacturing process, and they are excluded from the scope of

DfR. Thus, only Random and Extrinsic failure modes shall be modelled with proper

LD. However, identification of the reliability model parameters for each degradation

mechanism, according to the Physics of Failure (PoF) concept, requires preparation of

multiple ALTs, each optimized for different failure mode, which is very expensive and

time consuming. To overcome this challenge, chosen failure modes (solder delamination,

solder joint fatigue, bond wire lift-off, bond wire heel-cracking, brittle cracking) might

be considered as single fatigue-like failure mode. This approach is much more suitable

for some industrial customers of power electronics (e.g. power converter manufacturers)

than the typical PoF, as it is easier to implement and more cost effective. Moreover,

the examination of power semiconductor device which have failed in the field, often does

not allow to determine which particular degradation mechanism led to failure. In this

chapter, the procedure of identification of reliability model parameters for such fatigue-

like failures of encapsulated SiC power MOSFETs, is presented. Discussion covers all

technical aspects of reliability modelling, starting from the analysis of Accelerated Lifetime

59



Chapter 3. Reliability modelling of SiC power MOSFET

Testing strategies, through designing the dedicated test bench, up to identification of the

mathematical model parameters.

3.1 Accelerated Lifetime Test Methodology

The fundamental rule of the ALT is to design a test in such a way, to accelerate only desired

failure mechanism - in this case a fatigue-like failure modes. Typically, researchers have

used the Thermal Cycling (TC) and the Power Cycling (PC) for this purpose [146, 147],

referred also as passive and active cycling respectively. These studies have shown that

several challenges in the PC have to be resolved in order to obtain reliable and accurate

test results, which would be suitable for the lifetime estimation of power semiconductor

devices. These challenges may be divided into two groups: methodical and technical.

Moreover, methodical differences between test strategies heavily limits possibilities to

compare test results [148].

3.1.1 Thermal, Power and Current Cycling

The very foundation of the TC concept, is to keep temperature swing constant over the

test progress, to investigate the physical basics of fatigue failures - the crack expansion

rate, progress of the delamination or the grain growth in the solder joint [149, 150]. The

main idea behind such approach is to monitor a pre-defined electrical, physical or chemical

parameters, also called health indicators, in order to make an indirect SoH estimation of

the tested device. Furthermore, such test results may be used to implement the physical

laws of the fatigue into e.g. Finite Element Method models and to adjust those models

to reality [151].

The alternate approach is the PC test, during which the power level is kept constant

during test instead of temperature swing. As Device Under Test (DUT) degrades, the

thermal impedance increases, causing higher peak junction temperature during pulse time,

which additionally accelerates the degradation mechanism. Therefore, when the test is

performed without this self-acceleration mechanism, the lifetime of the power module is

approximately three times longer, as presented in [146, 152].
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Such a large difference is caused by a significant distinction in the PoF induced during

the TC and the PC. In case of the TC, due to the technical limitations of thermal

chambers, the temperature slope is quite low - it varies from 50
◦C
min

to 70
◦C
min

. In contrast,

the temperature slope during power cycles is limited only by the thermal capacitance

of the heatsink used for the cooling of DUTs. Therefore, the mechanical stress in the

tested structure, induced by differences in the thermal expansion coefficients between

SiC structure, solder joint and bond wire, is much higher in the case of PC test [153].

Moreover, there is no current flowing through the DUT during the TC, thus bond wires

are not subjected neither to any excessive heating, nor any Lorentz force, which cause

additional mechanical load to bond wires [154].

Although, recent study [155, 156] does not distinguish difference between the PC and

the Current Cycling (CC), they shall not be treated as same concept. In the CC test, the

heating current is kept constant during the test, instead of the power dissipated across

DUTs. Thus, power dissipation also increases along the test duration, accordingly to

progressing degradation of semiconductor device. Simply, increased On-state Channel

Resistance (RDSON
) or On-state Collector-Emitter Voltage Drop (VCE), results in higher

power dissipation for the same current conducted through tested device, which ends up

in higher Peak Junction Temperature (TJMAX
) and Amplitude of Junction Temperature

Swing (∆TJ) per cycle. In fact, this is the next self-acceleration mechanism, which may

additionally shorten UL of power semiconductor devices.

Similarly to the comparison of the TC and the PC test results, research presented

in [146] indicates that there is significant difference between the PC and the CC test

results. The self-acceleration mechanism described in previous paragraph, makes degraded

semiconductor device to fail far faster, if it is subjected to the CC test than in the case of

the PC test. However, such self-acceleration mechanism should not be present at all, until

the degradation of semiconductor device initiates. Author states, that the PC and the

CC shall be considered as equivalent if the EoL criteria, is the initiation of semiconductor

device degradation. If the EoL criteria chosen for the ALT is the fatal failure, than the
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control strategy which better corresponds to the real-life operating conditions should be

chosen. EoL criteria are broader discussed in further parts of this dissertation.

a) b)

Figure 18. Voltage and current during a power MOSFET switching conditions.

Summarizing the discussion, the PC and the CC tests are far better representation

of the real-life applications than the TC. In a typical power electronic converter, there

will be no compensation of the self-acceleration mechanism of power semiconductors

degradation rate - a power supply works with a specific load and has to deliver the

desired amount of power to it, without consideration about the operating conditions

the power electronic components within. Moreover, in the real application not only

does the MOSFET itself degrade, but also the thermal interface between it and the

heatsink. This phenomena additionally increases the junction temperature swing for

the same level of dissipated power. It is certain, that the CC test offers the best

projection of operating conditions, where conduction losses dominates - as in the case

of railway or grid applications. However, thanks to their superior performance (e.g.

low gate charge and parasitic capacitance), in modern HPPS SiC power MOSFETs are

typically used in high-frequency hard- and soft-switching applications, where switching

losses dominates. Unfortunately, switching losses are not only dependant to the SoH of the

power semiconductor device, but also on various exterior and environmental conditions -

e.g. driver circuit, ambient temperature, load, etc. Moreover, during switching conditions

power MOSFET is subjected to the linear mode operation, as it is depicted in Fig. 18.

Thus, for very high switching frequencies, the linear mode operation may take significant

part of the time, or even dominate over operation in saturation region. As the main goal
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of the ALT is the best possible projection of real-life operating condition, this aspect also

has to be taken into account. In the case of the PC test, it is possible to keep the DUT

in the ohmic region of the output characteristic during whole duration of the ALT, by

simple adjustment of power MOSFET’s Gate-Source Voltage (VGS). In contrast, in the

typical CC test power MOSFETs are kept fully saturated. Thus, for the ALT of power

semiconductor devices used in the state-of-the-art HPPS for plasma processing, the PC

test is found more suitable than the CC test.

Figure 19. Typical heating cycle for the Accelerated Lifetime Test (ALT) procedure with
distinguished particular cycle steps.

The last methodical issue, common for all types of ALTs, is to determine a proper

heating phase, also called the Pulse On-time tON , and cooling phase duration, referred

also as Pulse Off-time tOFF . An example of a power and temperature envelope during

a single cycle is shown in Fig. 19. A typical approach is to decrease the annealing and

tempering time (also called ”dwell time”) to shorten the overall cycle period and, as a

result, shorten the whole test duration. Unfortunately, the mechanical tensions present

inside the tested power semiconductor slowly relaxes during the dwell time. In such a

case, an excessive reduction of dwell time may result in shortening the lifetime of the

tested sample, through extended impact of the mechanical tensions on the semiconductor
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structure [157]. As a result, thermal cycles or mild-slope power cycles with long dwell-time

are preferable for e.g. solder delamination and grain growth, unlike short power cycles,

which mostly introduce bonding-related failure modes. These facts stress the importance

of testing power semiconductors in conditions close to the real application.

3.1.2 The End of Life (EoL) Criteria

The next fundamental decision, with a significant impact on both the design of the

ALT and the test results, is chosen EoL criteria, which may be either significant

degradation of DUT or fatal failure. In the first case, typical health indicators are: Gate-

Source Leakage Current (IGSLKG
), Drain-Source Leakage Current (IDSLKG

), Gate-Source

Threshold Voltage (VGSTH
), On-state Channel Resistance (RDSON

), Body Diode Forward

Voltage Drop (VFWD) and Junction-to-Case Thermal Impedance (ZTHJC
). Significant

drift of these parameters from their nominal values, as listed in Tab. 2, indicates heavy

degradation of the DUT. All of these parameters are useful; however, none of them is

universal as each of listed health indicators is related to a different degradation mechanism.

Thus, a proper health indicator should be defined during the design phase of ALT, and

it should be suitable for the failure mode under the examination.

Table 2. End of Life (EoL) criteria for SiC power MOSFETs [155, 158]

Parameter IGSLKG
IDSLKG

VGSTH
ZTHJC

RDSON
VFWD

Threshold +100% +100% ±20% +20% +2% +2%

As presented in [159], IGSLKG
and IDSLKG

may not change at all in the lifespan of the

tested semiconductor, while there are significant changes in either RDSON
or VFWD. On

the other hand, multiple studies [103, 160] have shown that both IGSLKG
and IDSLKG

spikes just before the fatal failure of power MOSFET. Both of these indicators are strictly

related to the state of the semiconductor chip itself, as the IGSLKG
increases sharply when

the gate oxide fails. Similarly, IDSLKG
spikes after the failure of a single MOSFET cell

inside the chip. Another health indicator, which describes the state of the gate oxide is

the VGSTH
. In contrast to IGSLKG

, this parameter changes slowly over the lifespan of the

power MOSFET, according to the gate oxide degradation progress.
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A well-known health indicator used in either the PC or the CC testing of power modules

is ZTHJC
. This parameter changes as solder between either semiconductor chip and paddle

or paddle and baseplate delaminates, due to degradation of the soldering between them

[161]. Thus, it is mostly used to monitor solder delamination progress.

The electrical parameters commonly used for evaluation of aging of bond wires are

RDSON
and VFWD [162]. These two indicators seem to be equivalent, but such hypothesis

might be misleading. As presented in Fig. 20, RDSON
measured at the terminals of

encapsulated power MOSFET consists of components like: Solder Resistance (RS), Bond

Wire Resistance (RB), drain and source Terminal Resistance (RT ), Channel Resistance

(RCh), Accumulation Region Resistance (RA), JFET Region Resistance (RJFET ), Drift

Region Resistance (RD) and N+ Region Resistance (RSubs) [159]. As MOSFET’s RCh is

dependent on VGSTH
, and RA is dependent on Flat-band Voltage (VFB), RDSON

increases

according to the degradation of the gate oxide, as both threshold voltage and accumulation

region resistance suffer degradation due to the drift in the interface charge. In contrast,

VFWD measured at the source-drain terminals is not VGSTH
dependent, but still contains

information about interconnection resistance. Because of this, it should remain constant

throughout all PC test, until the bond wire fails.

Usage of typical EoL criteria (see Tab. 2) allows to significantly shorten the duration of

the ALT, but has a significant drawback - it does not provide any information about how

long the damaged sample will work before a fatal failure. This is not critical in the case

of ALTs designed for scientific purposes, like investigation of the physical basis of fatigue

failures; nevertheless, it becomes significant in the case of building an empirical reliability

model for commercial purposes. Therefore, in presented study following approach was

chosen: the EoL criteria for tested SiC power MOSFETs was fatal failure, but for

monitoring of the degradation process two health indicators were recorded: RDSON
and

VFWD. As presented in previous paragraph, these parameters are excellent for the bond

wire degradation monitoring, which is in scope of fatigue-like failure mode definition,

and for which the presented PC test is optimized for. Other strategies for degradation

monitoring which are worth mentioning are TJMAX
measurement, and VDS measurement.
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Figure 20. Simplified diagram of encapsulated power MOSFET with marked chosen physical
components of On-state Channel Resistance (RDSON

) [86, 159].

However, the first strategy was not used in presented study, which is further discussed in

section 3.2.2, while the second one is suitable only for the CC test, as VDS across DUTs

remains constant during the PC test.

Another aspect of proper EoL criteria definition is cost efficiency and overall price of the

ALT. Thus, health indicators presented in previous paragraphs were critically evaluated

in scope of a DtC methodology [66]. The main challenge related to IGSLKG
, IDSLKG

, VGSTH

or ZTHJC
monitoring, is rather impractical realization of the measurement procedure for

a large number of tested samples. Accurate and valuable measurements require the usage

of sophisticated (e.g. curve tracer) or custom made (e.g. setup for thermal impedance

measurement) equipment and disassembling the samples from the laboratory setup. The

usage of a curve tracer, instead of a source meter unit or a high precision current source

with high precision voltage meter may significantly increase the investment cost of the

ALT. Moreover, a complicated health indicator measurement procedure can significantly

increase the maintenance cost in the large-scale ALT. In contrast to the health indicators
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Figure 21. Model of maintenance cost difference for simple and complex health measurement
in the scope of samples of MOSFETs tested and test duration (cycles) [86].

mentioned above, RDSON
and VFWD measurement circuits can be implemented directly

in the test bench for PC test, which makes these health indicators more suitable for

large-scale tests.

The impact of a chosen health monitoring strategy on the overall maintenance cost of

the ALT test is depicted in Fig. 21. For the cost estimation it was assumed that a four

wire measurement of RDSON
and VFWD takes approximately 1 min for a single sample,

while dismounting the tested MOSFET from the laboratory setup, measurement of the

desired complex health indicator, and remounting it back in the laboratory setup takes

at least 6 mins. In the model discussed, it is assumed that the health measurement

procedure is performed at least once per 2000 cycles and the cost of a working hour is

100 AC . The presented simulations show that although the health monitoring strategy

has no significant impact on the overall maintenance cost for small test batches (≤ 10

samples) or short tests (≤ 70000 cycles), for large test batches a proper decision on the
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monitored health indicator may allow for savings reaching 25000 AC . Code used for these

calculations is given in listing below. Variables used in this code are following:

• s - number of tested samples,

• T - number of power cycles performed by devices during the test,

• t1, t2 - time required for measurement of simple (t1) and complex (t2) health

indicator,

• h - cost of working hour,

• CM1, CM2 - maintenance cost of test assuming simple (CM1) and complex (CM2)

health indicator measurement,

• CMd - savings.

1 s = [1, 3, 5, 10, 15, 20, 25, 30, 35, 40];
2 T = [10000, 20000, 30000, 40000, 50000, 80000, 100000, 120000,

150000];
3 T1 = T./2000;
4 t1 = 1;
5 t2 = 6;
6 hcost = 100;
7 for i = 1:columns(T)
8 for j = 1:columns(s)
9 CM1(i,j) = 0;

10 CM2(i,j) = 0;
11 CMd(i,j) = 0;
12 endfor
13 endfor
14 for i = 1:columns(T)
15 for j = 1:columns(s)
16 CM1(i,j) = T1(1,i)*t1*(hcost/60)*s(1,j);;
17 CM2(i,j) = T1(1,i)*t2*(hcost/60)*s(1,j);;
18 endfor
19 endfor
20 for i = 1:columns(T)
21 for j = 1:columns(s)
22 CMd(i,j) = CM2(i,j) - CM1(i,j);
23 endfor
24 endfor�
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3.1.3 Control and health monitoring methods for large-scale
Accelerated Lifetime Test (ALT)

Another issue is scaling up the batch size to decrease the confidence boundaries of the

obtained reliability model, while maintaining the simplicity and low overall cost of the

laboratory setup. All DUTs subjected to the ALT can be connected in parallel or in

series. In the case of high current devices, parallel connection is not an optimal solution

as it requires the usage of extremely high current to heat up the tested devices properly.

The parallel connection of 1200 V 70 A SiC MOSFETs, chosen for discussed ALT, would

require power supply with enormous current efficiency: from 2.2 kA for 40 DUTs, up to

6.6 kA for 120 DUTs. Practical realization of such a laboratory setup would require the

usage of multiple high power DC sources, which would significantly increase the investment

costs.

To overcome this issue, and decrease required current efficiency of power supply used

in the laboratory setup to the reasonable level (e.g. ∼ 70 A), the sequential switching

of DUTs can be introduced. As presented in Fig. 22, for such control strategy only one

DUT is supplied at the same time. The main drawback of this approach is the extension

of the cycle period by a factor of the batch size, which makes the whole test pointless.

E.g. for base cycle period 20 s, 50000 power cycles performed in sequential switching of

40 DUTs would take ∼ 15 months.

Another disadvantage of the parallel connection is current sharing between the tested

samples. In the case of SiC power MOSFETs, RDSON
is 30− 40 mΩ, which is very close

to the resistance of wires and cables connecting DUTs. Thus, any asymmetry in galvanic

connection between samples can cause unequal current sharing. Such phenomena can

be avoided by a proper control strategy, like sequential switching discussed in previous

paragraph or active current equalizing.

Series connection of the samples tested naturally solves the issues described above.

Although, both voltage (for series connection) and current (for parallel connection)

equalizing may be performed by actively adjusting the gate voltage, the precise drain-

source voltage measurement is far more economical to implement, than the precise current
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Figure 22. Comparison of classic control mode (on the left) and sequential switching (on the
right) for Accelerated Lifetime Test (ALT) [86].

measurement. As working current during either PC or CC test consists only from direct

component, it is impossible to use simple transducer for current measurement. Thus,

either current shunt or Hall-effect current sensor would have to be used. However, high-

accuracy high current shunts has rather large footprint in comparison to power MOSFET

in SOT − 227B housing, which significantly limits the amount of DUTs, which could be

placed on the same heatsink.

The next technical issue is the definition of a proper active heating method. Based on

the electrical parameters of the tested SiC MOSFETs (see Tab. 3), the minimum DC

current required to heat up the structure by 80◦C is 62 A, which barely fits inside the

transistor SOA. As the maximum rated current for tested samples is 68 A at Baseplate

Temperature (TC) of 25◦C, a test conducted with a higher temperature swing (e.g. 105◦C),

would imply operation besides SOA - especially for higher Ambient Temperatures (TA)

(e.g. 30◦C or 50◦C). Unfortunately, operation beside SOA may distort the test result, by

false accelerating fatigue-like failure modes [117], which makes this approach sub-optimal.

Another possible solution for increasing the power dissipated at those MOSFETs to the

desired level, e.g. 200 W , is to introduce high frequency switching losses. Hard switching
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Table 3. SiC Power MOSFET electrical parameters

Electrical Parameter IDS VDSS RDSON
ZTHJC

TJMAX

Nominal Value 68 A 1200 V 34 mΩ 0.6 K
W

175 ◦C

allows for working within the safe operating area, while sustaining the desired temperature

swing. The main drawback of this approach is the high complexity of the laboratory setup,

as a accurate switching losses estimation requires phased, fast, high-resolution voltage and

current measurements [163]. Practical realization of such a measurement circuit requires

the usage of expensive ultra-fast acquisition systems [164], which significantly increases the

cost of the ALT procedure. Hard switching may also distort the test results by introducing

new failure modes, e.g. parasitic Bipolar Junction Transistor (BJT) transistor turn-on

[165] or power MOSFET self turn-on [166].

Based on the presented evaluation, the linear mode operation and heating up devices by

limited DC current (e.g. ∼ 22.5 A or ∼ 40 A), is found as an optimal and most economical

solution. Unfortunately, such approach brings up concerns if linear mode operation will

not distort the ALT results. Some researchers indicates that linear operation may cause

uneven current distribution across structure, resulting in hot spots which significantly

accelerate degradation mechanisms. However, the proper question shall be stated “does

DUT has negative or positive thermal coefficient?”. If the device is fully saturated,

the transistor drain current may have a negative or a positive temperature coefficient,

depending on the actual VGS value, which may lead to the thermal instability [167].

However, operation of the power MOSFET in linear region assures negative thermal

coefficient, which assures stable operation of power MOSFETs during ALT. By analogy,

the AQG-324 guideline [155] obliges designer of the ALT of IGBTs to assure operation

within the saturation area only, which corresponds to the power MOSFET linear (ohmic)

region. Therefore, operation in linear region is found suitable for the ALT of SiC

power MOSFETs. The graphical comparison of power MOSFET and IGBT output

characteristics is presented in Fig. 23.
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a)

b)

Figure 23. MOSFET a), and IGBT b) output characteristics with marked active, linear and
saturation region [168].

3.2 Accelerated Lifetime Test (ALT) laboratory
setup for encapsulated discrete SiC power MOS-
FETs

If testing strategy is a foundation of the ALT, its practical realization is a real engineering

challenge. It requires to solve many technical issues, like: accuracy of Junction

Temperature (TJ) estimation, stability of controller circuit, failure detection and others.

Unfortunately, such technical aspects have significant impact on the ALT itself, test results
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and utility of reliability model, prepared based on the obtained data. As presented in [169],

a 5% temperature measurement error for 80◦C temperature swing may introduce over 31%

relative error in the lifetime estimation. Moreover, there are multiple factors which affect

the overall temperature measurement error. Thus, in this section a key technical aspects

of the ALT setup are discussed: the repeatability, the stability and the accuracy.

Various researchers have presented their proposals for laboratory setups for PC [170],

TC [171] or Temperature and Power Cycling (TPC) [172]. A common feature for all of

these laboratory setups is the small batch size - sample size varied from 1 to 10 samples

[173, 174]. In contrast to the above, the laboratory setup presented in this thesis allows

for simultaneous test of 12 different batches, which resulted in a total capacity of 120

samples. Also, previous research was mostly focused on high voltage IGBT modules and

low power discrete semiconductors in common packages - e.g. TO − 220, TO − 247 [129,

147, 175]. The laboratory setup developed for purposes of this research well complements

the above mentioned state-of-the-art, as it is optimized for a cost effective, large scale PC

test of discrete semiconductors in industry grade housing: SOT − 227b.

3.2.1 Controller for the Power Cycling test

The first key requirements for the PC test bench is safety of staff working in the laboratory.

The second one is a precise control of the DUTs Drain-Source Voltage (VDS). Thus, the

control circuit designed for this purpose has to fulfill following functional requirements:

• low temperature drift,

• great immunity for the electromagnetic noise - both transmissioned and radiated,

• high control and measurement repeatability.

• high control and measurement accuracy,

• galvanic isolation between DUT and accessible parts.

A schematic view and picture of the gate voltage controller circuit are presented in

Figs. 24a) and 24b) respectively. All elements used in this circuit, have low thermal

drift (25 ppm). Moreover, components marked in schematic view have following values:

R1 = 56 [kΩ], R2 = 10 [kΩ], R3 = 0 [Ω], C1 = 47 [nF ]. PCB was designed in such
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a)

b)

Figure 24. Schematic diagram of the gate voltage controller circuit a) and corresponding
top view of the assembled board b) [86]. Redundant components were removed from depicted
Printed Circuit Board (PCB).

manner to ensure space for modifications, like increasing input capacitance of gate voltage

controller. Thus, not all components needed to be assembled to ensure proper operation,

as in the case of the PCB depicted in Fig. 24b).
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Analysis of the PC test principle, indicates that the dispersion of the TJMAX
between

DUTs may have influence on the reliability model prepared based on the ALT results.

As it was proved during the laboratory testing, there are two possible sources of the TJ

dispersion:

• Output Power Ripples (POUTRPL
) caused by the power supply itself and,

• Drain-Source Voltage Dispersion Between Neighboring Samples (VDS(n)−(n+1)
) caused

by tolerances of passive and active elements in the drain-source voltage controllers.

The first was measured with an MDO 3040 digital oscilloscope and a TA−042 differential

probe, with 2% basic accuracy, while the second was measured with both a differential

probe and a high precision voltmeter - FLUKE 289, with 0.025% basic accuracy. Despite

the high Output Voltage (VOUT ) and Drain-Source Current (IDS), overall Voltage and

Current Ripples (VOUTRPL
, IDSRPL

) across MOSFET cascade are very low and introduces

minor power fluctuations. Those fluctuations are approximately 12 W , which causes an

0.18◦C Junction Temperature Ripples (TJRPL
). The VDS dispersion was measured with the

differential probe, and it is below 300 mV , which results in 6.75 W power loss deviation

between DUTn and DUTn+1. This deviation causes 2.68 W Power Loss Dispersion

Between Neighboring Samples (PL(n)−(n+1)
), which corresponds to ∼ 4 ◦C Junction

Temperature Dispersion Between Neighboring Samples (TJ(n)−(n+1)
). Unfortunately, closer

analysis of the test results showed that the noise itself recorded with a TA−042 differential

probe was ∼ 240 mV , which resulted in very high signal to noise ratio - 0.8. Thus, this

measurement was repeated with the FLUKE 289 multimeter. The second round of

measurement showed that the worst-case VDS difference between samples is 96 mV for

sampleset A, 119 mV for sampleset B, 32 mV for sampleset C, and 34 mV for sampleset

D, resulting in ∼ 1.3◦C, ∼ 1.6◦C, ∼ 0.43◦C and ∼ 0.46◦C respectively. Therefore, this

deviation is considered negligible, similarly to the deviation caused by the power ripples.

This discussion is summarized in Tab. 4.

The test bench was retrofitted after 63355 of power cycles in order to increase its

capacity and to address concerns given by manufacturer of tested SiC MOSFETs. After

presenting initial test results, published in [86], to the manufacturer of discussed SiC
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Table 4. Electrical parameters of the laboratory setup for the Accelerated Lifetime Test (ALT)

Batch Size VOUT IDS POUT

40 [pcs] 260 [V ] 22.5 [A] 5.8 [kW ]

Sampleset Size VOUTRPL
IDSRPL

POUTRPL

10 [pcs] 12 [V ] 1 [A] 12 [W ]

VDS(n)−(n+1)
PL(n)−(n+1)

TJRPL
TJ(n)−(n+1)

300 [mV ] 2.68 [W ] 0.18 [◦C] 1.6 [◦C]

Figure 25. View of laboratory setup before a) and after b) the retrofit [86]. In original test
bench all samples were placed in the same rack system. After the retrofit, samplesets B and C
were placed in the rack system on the left, while A, D and J were tested in the rack system on
the right.

MOSFETs, he suggested that testing strategy is incorrect. Manufacturers statement was

that operation in the linear mode, may shorten actual useful lifetime of tested devices.

To verify this suggestions, following approach was introduced:

• the operating conditions for two samplesets (A and D) were changed, to increase

VGS while keeping the same Dissipated Power (PL) per sample,

• the reference sampleset J was introduced.

If chosen operating conditions (IDS, VDS, VGS) had no significant impact on degradation

mechanism, nothing should change. Otherwise, increase of IDS by factor of 2 should

prolong DUTs useful lifetime, thanks to shifting operating conditions closer to active

region.
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Table 5. Operating conditions of tested semiconductor devices: nominal values [86].

Sample set PL ∆TJ TJMIN
TJMAX

IDS

no. [W ] [◦C] [◦C] [◦C] [A]

A 150.5 90.5 30 120.5 22.5 =⇒ 40
B 175 105.3 50 155.3 22.5
C 126 76.5 50 126.5 22.5
D 126 76.5 30 106.5 22.5 =⇒ 40
J 175 105.3 30 135.3 40

Table 6. Operating conditions of tested semiconductor devices: dispersion[86].

PL ∆TJ TJMAX

[W ] [◦C] [◦C]
Mid-range +/- Mid-range +/- Mid-range +/-

A 150.66 0.43 90.40 0.26 120.40 0.26
B 174.95 1.34 104.97 0.80 154.97 0.80
C 126.91 0.39 76.14 0.24 126.14 0.24
D 127.64 0.36 76.58 0.22 106.58 0.22
J 175.16 2.04 105.09 1.22 135.09 1.22

Moreover, ALT was also repeated by manufacturer. Their test results were shown to

TRUMPF and compared with research presented in this thesis. However, manufacturer

classified their ALT as confidential, thus their test procedure nor their test results can

not be discussed in this thesis.

As depicted in Fig. 25, the main difference between initial and retrofitted test bench

is mechanical design, which allows to add additional sampleset (J) in the retrofitted test

bench. Same as in the case of the initial setup, VDS(n)−(n+1)
, TJ(n)−(n+1)

and TJ accuracy

caused by power fluctuations, were measured during start up of the ALT.

The last key parameter of the gate voltage controller is its stability over time. Periodical

VDS measurements performed for each DUT at the very beginning of the ALT test, after

16928, 63415, 81871 cycles and later, showed that power MOSFET’s operating conditions

remained at the same level, within ±100mV confidence boundaries. To sum up discussion

in this subsection, operating conditions and their dispersion for DUTs are listed in Tab.

5 and Tab. 6.
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3.2.2 Power MOSFET junction temperature estimation for
Accelerated Lifetime Test (ALT)

The next technical issue in the ALT is an accurate TJ measurement. Both direct and

indirect measurement methods were successfully utilized in [176, 177]. However, in

the case of encapsulated power MOSFET, an accurate TJ measurement is especially

challenging, as the utilization of any direct measurement method is impossible.

The main disadvantage of the indirect temperature methods is a rather small change

of the measured signal with temperature [178]. This fact significantly increases the

complexity and price of equipment used for TJ estimation based on the Thermo-Sensitive

Electrical Parameter (TSEP) monitoring. In addition, power MOSFET TSEPs (e.g.

RDSON
, VGSTH

, IDSLKG
, etc.) changes as chip and bond wire degradation progresses. This

fact is especially unfortunate as an accurate TJ estimation requires a periodic calibration

procedure, which could significantly increase the maintenance cost of the ALT.

For these reasons, a different approach has been chosen for the presented laboratory

setup. Junction temperature is estimated based on monitored Baseplate Temperature

(TC), Dissipated Power (PL) and known initial Junction-to-Case Thermal Impedance

(ZTHJC
). As stated previously, thermal impedance changes over time due to degradation of

soldering between either chip and paddle or paddle and baseplate. Therefore, this method

allows to determine only the initial conditions - e.g amplitude of junction temperature

swing for fresh samples. This is completely sufficient for purposes of presented ALT,

as it was designed for empirical reliability model extraction and the self-acceleration of

the degradation mechanism is a desired phenomenon. Thus, for purposes of reliability

modelling only an initial temperature swing amplitude and absolute junction temperature

are required, as it results in the useful lifetime of SiC power MOSFET defined as a number

of power cycles, for a given initial ∆TJ . Thus, to estimate TJ following equation can be

used:

TJ = PL · ZTHJC
+ TC (13)

The main drawback of the model-based TJ estimation is the strong relationship between

thermal model parameters, environmental conditions and the placement of the reference
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temperature sensor [179]. One possibility to overcome this flaw, and to increase TJ

estimation accuracy is measurement and identification of ZTHJC
parameters (e.g. with a

particle swarm optimization algorithm [180]), for a sample placed in the ALT laboratory

setup. Such approach allows to easily improve accuracy of TJ estimation for initial

conditions, at the very beginning of ALT test. However, if it is desired to accurately

monitor TJ during the test, this calibration procedure has to be repeated periodically

to maintain estimation accuracy at a satisfactory level. Unfortunately, this significantly

increases the maintenance cost of the ALT procedure. Another possible solution, for

accurate TJ monitoring during ALT of power semiconductors, is the preparation of a

complex, time-dependent thermal impedance model, which covers variations of lumped

parameters caused by degradation or operating conditions, as presented in [181]. These

flexible RC parameters can be extracted with Finite Element Modelling (FEM) and can

be verified or calibrated with proper experiments. The main drawback of this method is

the amount of time and effort spent on the identification of thermal model parameters,

which increases the investment cost of ALT test.

An alternate approach is to prepare a reliability model based on the case temperature

or reference temperature instead of the estimated junction temperature; however, such

an approach difficult any attempts on comparative study between results obtained by

different researchers. Therefore, it would only be useful for internal purposes of industrial

consumer of power electronics - e.g. to estimate the UL of an SiC power MOSFET, based

on actual stressors present in a target application. The main benefit of this approach is

simplicity - as far as environmental parameters remain constant and case temperature

is measured in the same way in ALT the laboratory setup and target application, the

developed reliability model is correct. Environmental conditions in HPPS for plasma

processing are usually stable, as they are hermetically sealed and water cooled, and

also they are used in clean rooms, where either air or coolant temperature is strictly

monitored. Thus, it is possible to model target environmental conditions in the ALT test

setup, which makes proposed alternate approach for temperature measurement extremely

delightful option, especially as the ALT presented in this thesis was prepared solely
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Figure 26. Simplified cross-section of semiconductor device in SOT − 227B housing.
Junction temperature, case temperature and reference temperature of such device are labeled
Junction Temperature (TJ), Baseplate Temperature (TC) and Top Surface Temperature (TTOP ),
respectively.

for internal purposes of TRUMPF. Temperature measurement circuit, designed for this

purpose, was presented in [182]. Although importance of the simplicity of proposed

strategy may not be clear if the ALT test itself is considered, it is critical for practical

usage of developed reliability model. In many HPPS, it is impossible to perform either

direct or TSEP-based TJ measurement, due to high operating frequency or packed design.

Thus, any reliability assessment based on measurements performed in real HPPS, would

be heavily affected not only by accuracy of reliability model, but also by accuracy of

TJ estimation method used for identification of the stress level. Moreover, complex

measurement methods introduces concerns about reproducibility, which may also affect

results of further reliability predictions. Therefore, the simplicity is one key aspects

defining the applicability of reliability model prepared for purposes of the proposed DfR

procedure. Thus, during presented ALT beside TC measurement, which was performed to

estimate junction temperature for initial conditions, the temperature of DUT Top Surface

Temperature (TTOP ) was also recorded. Graphical relationship between these reference

temperatures is presented in Fig. 26.
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3.2.3 Failure detection algorithm for the Accelerated Lifetime
Test (ALT)

The last technical challenge related to the design of the ALT laboratory setup is failure

detection. As discussed earlier, the test was conducted until all samples fail; therefore, it

was necessary to design an emergency circuit, capable of shutting down the heating current

within milliseconds in order to avoid complete destruction of the SiC chip. This allows for

further analysis of a failed MOSFET - e.g. decapsulation or Röntgen Radiation (X-RAY)

photography. For this purpose, a voltage and current monitoring circuit, presented in

Fig. 27, was designed. An emergency algorithm based on both measurements determines

Figure 27. Schematic of supervisory circuit for failure detection.

the condition of the laboratory setup, and whether there is a heating pulse, short circuit

or open circuit. Four different threshold levels for the voltage and current measured were

defined:

• Current Threshold Low (ILOW ): INOMINAL · 5%,

• Current Threshold High (IHIGH): INOMINAL · 90%,

• Voltage Threshold Low (VLOW ): VNOMINAL − VDSMIN
,

• Voltage Threshold High (VHIGH): VNOMINAL · 120%,
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where Nominal Current (INOMINAL) is the RMS current value during a cycle, Nominal

Voltage (VNOMINAL) is the RMS voltage across the MOSFET cascade during a cycle

and VDSMIN
is the Minimum Drain-Source Voltage in single DUT during the test. In the

discussed emergency detection algorithm, Actual Drain-Source Voltage (VACT ) and Actual

Drain-Source Current (IACT ) are constantly compared to these threshold levels, to detect

three possible states: Short-Circuit (SC), Open-Circuit (OC) and Correct Operation (CO).

The logical relationships used for this purpose are presented by (14) - (16). In Fig. 28, an

actual failure detection is presented. Both output current (channel 1 - yellow) and voltage

(channel 2 - green) across the tested samples decrease exponentially after failure detection.

As each voltage controller circuit is equipped with a parallel RC circuit, balancing voltage

across MOSFETs, it is assured that neither failure has a negative impact on the rest of

the tested samples.

IACT ≥ IHIGH ∧ VACT ≤ VLOW =⇒ SC = 1 (14)

VACT ≥ VHIGH ∧ IACT ≤ ILOW =⇒ OC = 1 (15)

SC ̸= 1 ∧OC ≠ 1 =⇒ CO (16)

The presented failure detection circuit may also be used for further automatization

of the ALT test bench or integration of the laboratory setup in a larger infrastructure,

compliant with Industry 4.0 concept [183]. In this thesis, the most basic version of the

laboratory setup for ALT of power SiC MOSFETs is presented. Therefore, each failure

stops the test until the operator manually removes the failed sample and resets the alarm,

which takes ∼ 15 min.
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Figure 28. Test of MOSFET failure detection circuit: Channel 1 - operating current (IOUT ),
Channel 2 - voltage at MOSFET cascade (VOUT ), Channel 3 - voltage at shorted sample (VDS)
[86]. Test was performed at DUT #8D.

3.3 Experimental verification

3.3.1 Health indicator measurements

The results of periodic health indicators measurements for tested power semiconductor

devices are presented in Figs. 29 - 33.

a) b)

Figure 29. Body Diode Forward Voltage (VFWD) drop a), and On-state Channel Resistance
(RDSON

) b) measurement for sample set D - ∆TJ = 76.5◦C, TJMIN
= 30◦C, TJMAX

= 106.5◦C.
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a) b)

Figure 30. Body Diode Forward Voltage (VFWD) drop a), and On-state Channel Resistance
(RDSON

) b) measurement for sample set C - ∆TJ = 76.5◦C, TJMIN
= 50◦C, TJMAX

= 126.5◦C.

a) b)

Figure 31. Body Diode Forward Voltage (VFWD) drop a), and On-state Channel Resistance
(RDSON

) b) measurement for sample set A - ∆TJ = 90.5◦C, TJMIN
= 30◦C, TJMAX

= 120.5◦C.

a) b)

Figure 32. Body Diode Forward Voltage (VFWD) drop a), and On-state Channel Resistance
(RDSON

) b) measurement for sample set B - ∆TJ = 105.3◦C, TJMIN
= 50◦C, TJMAX

= 155.3◦C.
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a) b)

Figure 33. Body Diode Forward Voltage (VFWD) drop a), and On-state Channel Resistance
(RDSON

) b) measurement for sample set J - ∆TJ = 105.3◦C, TJMIN
= 30◦C, TJMAX

= 135.3◦C.

In the case of the power MOSFETs, which were subjected to low thermal stress

(∆TJ swing from 30◦C to 106.5◦C per cycle), neither of health indicators showed any

signs of degradation in the first 40000 cycles. A deeper analysis of Fig. 29, shows

significant increase of RDSON
after 70000 − 80000 cycles, which corresponds to proper

increase of VFWD. Such phenomena clearly indicates progressing degradation of SiC power

MOSFET. Although, the total increase of RDSON
before failure varied among samples:

from 3% − 4% for DUTs #5D and #6D, up to 29% − 26% for DUTs #9D and #10D.

Devices from group C earlier showed signs of degradation, the clear increase of RDSON
was

visible after only 50000 cycles, although the corresponding increase of VFWD was found

after 10000 cycles later.

In comparison to groups C and D, health indicators measured for power MOSFET

subjected to moderate thermal stress (90.5◦C junction temperature swing), shows a clear

drift after only 40000 cycles. Similarly to the previously discussed groups, both electrical

parameters changed in the similar time, which suggests a rapidly progressing degradation

or even a lift off of the bond wires in the tested semiconductor devices. The RDSON

measurement for DUT #10A increased over 100% from its nominal value during ALT.

In contrast to above discussed results, health indicators of DUTs subjected to heavy

thermal load (B, J) indicates rapidly progressing degradation from the very beginning

of the ALT. In the case of samples from group B, early change of electrical parameters

is visible for both RDSON
and VFWD. However, for samples from group J RDSON

did not
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Table 7. Failures recorded during Accelerated Lifetime Test (ALT) test [184].

group A group B group C group D group J

#1 63394 33163 − 92328 28973
#2 79651 63189 96526 82532 21451
#3 82532 24643 − 92328 24874
#4 82532 63189 − 92328 19157
#5 92328 33359 75037 92328 24727
#6 63404 16283 − 92328 28973
#7 92328 33100 − 82512 25719
#8 67710 18975 − 92328 22882
#9 63394 16756 133117 76829 28973
#10 48793 63189 − 91794 28973
#11 N/A N/A N/A N/A 19686
#12 N/A N/A N/A N/A 19536

change in the first 16000 - 20000 cycles. Similarly to groups C and D, devices subjected

to lower operating current lasted longer, despite heavy degradation.

3.3.2 Post Failure Analysis

To verify if failures were indeed caused by fatigue-like failure modes, 32 random selected

samples were subjected to post-failure analysis, which consisted of following steps:

1. electrical measurement,

2. X-RAY imaging,

3. Confocal Scanning Acoustic Microscopy (CSAM),

4. post-decapsulation visual inspection.

Post failure analysis was performed with cooperation of the Łukasiewicz Tele- and Radio

Research Institute (ITR). First group of failed samples was subjected to the post failure

analysis during retrofit of laboratory setup, while the second group was examined at the

end of the ALT. As presented in Tab. 8, most failures resulted in both Gate-Source and

Drain-Source shorted.

The next step of the post-failure analysis is a non-invasive laboratory testing - the

X-RAY imaging and CSAM. In the case of the first group of samples (DUTs #7B,
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Table 8. Electrical test results of failed SiC power MOSFETs.

Sample G− S D − S Sample G− S D − S

#1A Shorted Shorted #1C - -
#2A Short circuit to PE #2C Shorted 15k Ω
#3A Shorted Shorted #3C - -
#4A Shorted Shorted #4C - -
#5A Shorted Shorted #5C Open Shorted
#6A Shorted Shorted #6C - -
#7A Shorted Shorted #7C - -
#8A Shorted Shorted #8C - -
#9A Shorted Shorted #9C Shorted Shorted
#10A 2.2 Ω Shorted #10C - -
#1B Open Instable #1D Shorted Shorted
#2B Shorted Shorted #2D Shorted Shorted
#3B Shorted Shorted #3D Shorted Shorted
#4B Shorted Shorted #4D Shorted Shorted
#5B Shorted Shorted #5D Shorted Shorted
#6B Shorted Shorted #6D Shorted Shorted
#7B 4 Ω 3.5 Ω #7D Shorted Shorted
#8B Instable Instable #8D Shorted Shorted
#9B Shorted Open #9D Shorted Shorted
#10B Shorted Shorted #10D Shorted Shorted
#1J Shorted Shorted #7J Shorted Shorted
#2J Shorted Shorted #8J Shorted Open
#3J Shorted Shorted #9J Shorted Shorted
#4J Shorted Shorted #10J Shorted Shorted
#5J Shorted Shorted #11J Shorted Shorted
#6J Shorted Shorted #12J Shorted Shorted
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#1B, #5B, #8B, #6B, #10A), neither X-RAY nor CSAM analysis showed any signs of

delamination. As it was confronted with the supplier, cavities in the soldering beneath

the semiconductor chip, visible in X-RAY images presented in Fig. 34, were within an

acceptable range - typical for their manufacturing process. Thus, those cavities were

not found as a result of the ALT. In addition to the above-mentioned, X-RAY scanning

revealed also a crack in the SiC chip structure.

The second group of samples chosen for post-failure analysis was subjected only to

CSAM analysis, which working principle is based on physics of acoustic wave. When

wave propagates through any medium, it may be either scattered, absorbed or reflected

at the interface between different materials. In this technique, the echo, generated by the

acoustic impedance mismatch between two materials, is registered. Then, the image of

tested sample is generated, based on the analysis of the time the ultrasonic pulse requires

to reach the material interface and return to the transducer. This allows to determine

magnitude and phase of reflected signal. Thus, this technique allows to find irregularities

or discontinuities in any solid material, which have high penetration depth of acoustic

waves. Depending on the axis and surface of scanning, A-scan, B-scan, C-scan and T-

scan can be specified [185].

Bright areas in post-processed images are related to high magnitude of the reflected

signal. Moreover, if the ultrasound beam goes from high acoustic-impedance medium to

a low acoustic-impedance medium, it causes the inversion of the phase of the reflected

beam. These two effects combined are typical for material-air interface, and therefore may

indicate presence of delamination or voids, as depicted in Fig. 35. The CSAM imaging

revealed severe solder delamination in 19 DUTs - in certain examples chip was completely

detached from the metal paddle.

The last step of post failure analysis discussed in this thesis is microscopy analysis of the

chemically decapsulated samples. The moulding was dissolved with concentrated Sulfuric

Acid (H2SO4). As the decapsulation process itself is highly invasive, it was performed in

two stages. First, a short acid bath allowed the lifted bond wires to be exposed (see Fig.

36), which confirmed the hypothesis that the observed growth of RDSON
and VFWD was
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a)

b)

Figure 34. Top view a), and side view b) of a SiC Device Under Test (DUT) #10A
subjected to X-RAY analysis. Visible small cavities (white arrows) were verified as typical
of the manufacturing process - they were not induced by the Accelerated Lifetime Test (ALT)
test. Crack in SiC chip, located beneath terminal, was marked with red arrow [86].

caused by the degradation of the bond wire connection. Among analyzed samples, over 24

DUTs had few or all bond wires lifted-off. Moreover, in single bond wire, the heel-crack
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a) b)

Figure 35. C-scan of Device Under Test (DUT) #9J subjected to the Confocal Scanning
Acoustic Microscopy (CSAM) imaging. Bright areas indicates high magnitude of the reflected
signal, while yellow and red areas indicates inversion of the phase of the reflected beam. These
areas are marked with arrows 1 and 2 respectively. Presented data suggests severe delamination
of soldering beneath the SiC chip.

was found (see Fig. 36b)). In some devices, although most of bond wires were lifted-off,

the soldering beneath the chip remained intact (see Fig. 37). Second, a longer acid bath

revealed the SiC chip and distinct black markings from the lifted bonding wires, depicted

in Fig. 38a). This characteristic black mark is a result of the chemical reaction between

sulfuric acid and either remains of solder or the intermetal dielectric layer. Unfortunately,

further metallurgical analysis was impossible to perform due to the highly invasive nature

of the decapsulation process. However, a comparison of the degraded power MOSFET

with fresh sample, depicted in Figs. 38a)-b), supports this hypothesis, as each bond wire

is surrounded with a characteristic black sediment.

a) b)

Figure 36. Top view of Device Under Test (DUT) #9J a), and DUT #6J b) after chemical
decapsulation process. In both samples, some bond wires are lifted-off. A cracked bond wire is
marked with white arrow [184].
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a) b)

Figure 37. Bottom-up Confocal Scanning Acoustic Microscopy (CSAM) imaging a), and post
decapsulation photography of Device Under Test (DUT) #5C . Minor voids and cavities, marked
with white arrows in a), are not considered as rejectable according to the J-STD-020E standard,
while clearly some of bond wires are lifted off. Lifted bond wires are marked with white arrows
in b) [184].

a) b)

Figure 38. Top view of decapsulated Device Under Test (DUT) #10A after long acid bath
a), and top view of fresh sample subjected to the same decapsulation process b). Visible black
markings are left by lifted bonding wires (white arrow). Thin crack in SiC chip (blue arrow) is
the result of a hotspot caused by non-laminar current flow across the SiC chip. The chip itself
was partially damaged during the decapsulation process. It broke along the crack line (green
arrows) [86].

As presented in Fig. 39, the X-RAY imaging and visual inspection of decapsulated

device revealed also a crack across the SiC chip in some samples. However, in other

devices, only a puncture damage of semiconductor structure was present. Either crack

or puncture damage of SiC chip has the same root cause. With each lifted bond wire,

the current is conducted through a smaller surface, resulting in local overheating and

significant mechanical stress in SiC chip, which leads to cracking. Comparative analysis

of decapsulated samples indicates that cracks and punctures were localized closer to the
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source terminals than to drain and gate terminals. However, none distinct correlation

between position of bond wire and total amount of lifted bond wires at that position

was found. For this purpose, image of SiC chip was divided into 15 areas and cracks or

punctures were assigned accordingly. Picture of SiC chip with assigned areas and bond

wires labels, and results of visual inspection, are presented in Figs. 40 and 41.

a) b)

Figure 39. Top view of Device Under Test (DUT) #1D with distinct crack in a SiC die a),
and DUT #9B with puncture burnout of SiC chip b).

Figure 40. Top view of SiC chip after chemical decapsulation with numered bond wires and
quadrants. This diagram was used further for statistical analysis, to confirm whether any of
bond wires or parts of SiC chip are more prone to failure than others.
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Figure 41. Statistical analysis of failed bond wires and quadrants (see Fig. 40) in which either
crack or puncture was found. Results indicates that there is no correlation between position
of bond wire and total amount of failed bond wires. There are no clear relationship between
amount of cracks and position on SiC chip neither.

Post failure analysis confirms that packaging technology limits lifetime of SiC power

MOSFETs in SOT−227b housing. Moreover, presented investigation confirms that failure

modes recorded in the ALT are within the scope of fatigue-like failure mode definition,

which proves that proposed ALT methodology is correct. Thus, test results are found

suitable to develop proper reliability model, which could be used to estimate useful lifetime

of SiC power semiconductor devices. Identification of proper reliability model and its

parameters is presented in the next subsection.

3.3.3 Reliability Model

One of the most recognized mathematical models used in reliability engineering is a

Weibull distribution [99], which has been proven as suitable for various failure-modes

of semiconductor power devices - from fatigue of solder interconnection [186] to TDDB

of gate-oxide layer [187]. Thus, it is expected that Weibull model shall be also suitable
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for fatigue-like failure modes. To confirm this thesis, a various mathematical models

were fitted to failures with the Maximum Likehood Estimation (MLE) algorithm. As

depicted in Fig. 42, neither of compared distributions (2- and 3- parameter Lognormal,

1- and 2- parameter Exponential, Logistic, Normal) allowed for significantly better fitting.

Moreover, visual inspection and analysis of Anderson-Darling test results suggests that

either 2- and 3- parameter Weibull model assures satisfactory projection of recorded data.

Thus, the Weibull model was chosen for further investigation.

Typically, the Weibull distribution is described with equation (17), where Probability

Density Function (PDF) or f(x) is described with three model parameters: β, η and γ

called Shape Parameter, Scale Parameter and Location Parameter respectively.

f(t) = (
β

η
)(
t− γ

η
)β−1(e−( t−γ

η
)β) (17)

Next, the β, η and γ parameters were identified for each distribution. Then, the

probability plots were drawn accordingly, as depicted in Fig. 43. As the β is related

to failure mode itself, and common failure mode was already confirmed for all samples

during post-failure analysis, the common β was assumed for all models. Although models

presented in Fig. 43 properly project reliability of SiC MOSFET, there are still far from

any useful form. As an example, each of these models is correct only for specific stress

level - e.g. junction temperature swing or maximum junction temperature. Thus, the

universal model, which could be used in DfR, was developed.

For this purpose, the η had to be modified to form of multivariable function. Either

LESIT [188], originally developed for solder connections, or CIPS2008 model [189],

originally developed for Si IGBT modules, could be used. Original forms of LESIT

model and CIPS2008 model are presented in (18) and (19), respectively.

Nf = A · (∆TJ)
α · exp

EA
kB ·(TMEAN+273) (18)

Nf = K · (∆TJ)
β1 · exp

β2
TJ+273 · tβ3

on · Iβ4 · V β5 ·Dβ6 (19)

These models returns the Mean Useful Lifetime (Nf ) expressed in cycles, while parameters

A, K, α, β1 - β2 are the material constants, EA is Activation Energy and kB is Boltzmann
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a)

b)

Figure 42. Cross-comparison of various mathematical distributions fitted to the Accelerated
Lifetime Test (ALT) results [184].
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a)

b)

Figure 43. Probability plots prepared for each tested sample set of SiC power MOSFET, based
on 3-parameter Weibull model asumming separate a) and common b) the Shape Parameter (β)
[184].
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Constant. In both formulas, ∆TJ , Mean Junction Temperature (TMEAN ), and TJMAX
, are

expressed in Celcius. In addition, CIPS2008 model includes also impact of tON , Current

per Wire Bond (I), Chip Blocking Voltage (V ) and Diameter of Bonding Wire (D) in

useful lifetime calculation.

As it was stated in previous paragraph, either LESIT or CIPS2008 model were originally

developed for different applications. Thus, all constant parameters had to be identified

based on the ALT test results. As all power cycles were performed with the same tON ,

and only one kind of SiC power MOSFET was subjected for ALT, the CIPS2008 model

could be simplified into following form (20).

Nf = K · (∆TJ)
β1 · exp

β2
TJMAX

+273 · Iβ3 (20)

Therefore, to prepare a universal model, a Weibull model in which the η is a function of

stress levels, equations (18) and (20) were used.

η1(∆TJ , TJMAX
) = A · (∆TJ)

α · exp
EA

kB ·(TJMAX
+273) (21)

η2(∆TJ , TJMAX
, IDS) = K · (∆TJ)

β1 · exp
β2

TJMAX
+273 · Iβ3

DS (22)

The last remaining parameter in Weibull distribution formula (17) is the location

parameter. For discussed universal model, it was assumed that failure may occur at

any time, resulting in γ = 0. This allowed to simplify 3-parameter Weibull distribution

to it’s 2-parameter equivalent (23). This form was used to prepare a universal model,

suitable for the purposes of a DfR procedure.

f(t) = (
β

η
)(
t

η
)β−1(e−( t

η
)β) (23)

Thus, probability plots depicted in Fig. 43 were replaced with 2-parameter equivalents,

as presented in Fig. 44.

To identify material parameters given in Eqs. (21)-(22) a multiple linear regression

was performed. The residual plot depicted in Fig. 45a), indicated that:

• there was no correlation between residuals,
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a)

b)

Figure 44. Probability plots prepared for each tested sample set of SiC power MOSFET,
based on 2-parameter Weibull model assuming separate a) and common b) Shape Parameter
(β) [184].
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Table 9. Material constants identified for LESIT and CIPS2008 models [184].

Parameter LESIT Parameter CIPS2008

A 1.65e15 K 3.37e13
α −5.96 β1 −3.88
kB 1.38e− 23 β2 31.73
EA 3.11e− 25 β3 −0.82

• usage of the LESIT model results in significantly higher estimation error than in

the case of CIPS2008 model.

The second conclusion was additionally confirmed when MTTF of SiC power MOSFETs

subjected to APC test was compared with developed models. As presented in Fig. 45b)

both the LESIT model and the CIPS2008 model offer satisfactory projection of laboratory

test results.

Thus, both models were found suitable for reliability modelling of SiC power MOSFET

in SOT −227B housing. However, a simplified form of CIPS2008 equation was chosen for

further evaluation of the universal reliability model. This decision was caused by simple

fact that even simplified form of CIP2008 model cover higher amout of stress factors. The

identified values of material constants and activation energy, corresponding to Eqs. (21)

- (22) are listed in Tab. 9.

At last, the MTTF curves for different ∆TJ and IDS values were identified. Both

Fig. 46a) and closer analysis of β1 and β3 parameters suggests that ∆TJ has significantly

higher impact on power MOSFET reliability than the IDS. Furthermore, the PDF for SiC

power MOSFETs subjected to various operating conditions were prepared with presented

universal model (see Fig. 46b)). Based on such PDFs it is possible to calculate how failure

rate changes over the time, or what is power MOSFET useful lifetime defined as mean

value (same as MTTF), or so-called BX life - the time at which X% of MOSFETs will

fail. These data may be further used in DfR procedure to estimate either railure rate or

useful lifetime of high performance power converter.
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a)

b)

Figure 45. Residual plot for Weibull distribution Scale Parameter (η) estimators, based on
LESIT and CIPS2008 models a), comparison of test results with MTTF for SiC power MOSFET
estimated based on Weibull-LESIT model and Weibull-CIPS model b) [184].
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a)

b)

Figure 46. Mean Time To Failure (MTTF) estimation for SiC power MOSFETs subjected to
power cycling at various operating conditions. The ambient temperature assumed in analysis
is 40◦C a), probability density functions derived for SiC power MOSFETs subjected to power
cycling at various operating conditions b) [184].
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3.4 Conclusions

In this chapter, a methodology for conducting a Power Cycling (PC) test on SiC power

MOSFETs in SOT − 227B housing is presented. The PC test was chosen to perform the

Accelerated Lifetime Test (ALT), for the identification of reliability model parameters

for SiC power MOSFET in SOT − 227B housing. Presented methodology was proven

as valid for performing a ALT test optimized for fatigue-like failure mode, thanks to the

extensive post-failure analysis (X-RAY imaging, Confocal Scanning Acoustic Microscopy

(CSAM) and decapsulation). Although reliability modelling and PC of SiC devices were

investigated by various researchers, the previous papers were focused on multichip IGBT

or MOSFET modules [160, 161] and discrete devices in TO−220 or TO−247 housing [147,

159]. The industry-grade SOT − 227B housing, for high power semiconductor devices,

has not been investigated yet.

Beside testing strategy itself, technical aspects of the test bench for the ALT of SiC

power MOSFETs in SOT − 227B housing are presented. In contrast to the setups

presented by other researchers, presented test bench allows to perform a ALT in industry-

friendly manner - with 120 Devices Under Test (DUTs) at once. Designed gate voltage

controller circuit was proven to fulfill all key requirements:

• good thermal stability,

• good accuracy of Drain-Source Voltage (VDS),

• low Junction Temperature Dispersion Between Neighboring Samples (TJ(n)−(n+1)
).

At last, designed failure detection algorithm for ALT allowed to mitigate effects of failure

of power MOSFET, and protected SiC chip from complete destruction, which enabled the

post-failure analysis of DUTs. This procedure allowed not only, to understand in details

Physics of Failure (PoF) of SiC power MOSFET subjected to the ALT, but also compare

effectiveness of various examination techniques.

Presented reliability model for SiC power MOSFETs in SOT −227B housing, fits well

to the obtained data. Moreover, proposed approach of combining a Weibull distribution

with a CIPS2008 model, allows to obtain the PDF for various operating conditions. Thus,

it is found suitable for purposes of DfR procedure.
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Future research on lifetime modelling of SiC power MOSFET in SOT − 227B housing

may address following issues:

• Low Amplitude of Junction Temperature Swing (∆TJ) - below 40◦C.

As presented in [190], strong experimental evidence suggests that the degradation

process accelerates toward EoL. Therefore, it is possible to define linear and non-

linear ageing phases for thermomechanical failure modes. Although low ∆TJ

temperature swings do not significantly contribute to lifetime consumption during

the linear stage of the ageing process, this impact is no longer negligible whenever

solder crack initiates or the bond-wire starts to lift-off and the power semiconductor

reaches its lifetime non-linear stage. In addition, in the linear ageing phase of the

power semiconductor, some of the materials used for manufacturing remain in the

elastic region. When these materials reach the plastic region, their hysteresis stress-

strain plots are shifted, which results in their deformation after subjecting the power

semiconductor to thermomechanical stress. Therefore, the power semiconductor

reaches the non-linear ageing phase. In this case, it is expected that a reliability

model extracted from ALT results may introduce an underestimation of the power

MOSFET useful lifetime for low temperature swing.

• Different tON and tOFF ratio and duration of the power cycle or different power

profile.

As mentioned in section 3.1.1, the heating profile has a significant impact on the

test results due to the change in the leading failure mode. In this case, the reliability

model would only be correct for very specific heating profiles - the same as used

during ALT. This leads to the following questions: How to extrapolate lifetime

estimation for different heating profiles (e.g. different duty cycle and period)? What

would the lifetime estimation error be if this relationship between the duty cycle of

the heating profile and power MOSFET reliability were ignored?

• Switching losses instead of conduction losses.

In typical applications (e.g. AC-DC converter, DC-DC converter) the power
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MOSFET is subjected to high switching losses and a small part of conduction losses,

which might also impact on lifetime estimation accuracy.
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Chapter 4

Case Study analysis for proposed
DfR procedure

The last chapter of this thesis is focused on practical examples of proposed DfR procedure.

However, products from TRUMPF’s portfolio could not be used for this purpose, as close

analysis of e.g. electrical models or schematics would reveal company know-how and

intellectual property. Thus, the alternate approach was proposed. To present first five

stages of modified DfR procedure (from Technical Specification stage to Proof of Concept

phase), a Power Electronic Building Block (PEBB) for a modular power converter, based

on the Wide-Bandgap (WBG) power semiconductor devices, was designed. This research

is further discussed in [110].

4.1 Reliability Oriented Design of Power Electronic
Building Block module

Previous research suggests that following topology are suitable as power building blocks

for large power conversion systems:

• H-bridge,

• Dual Active Bridge (DAB),

• two-level single- or three-phase leg inverter,

• three-level neutral-point clamped inverter,

• T-type converter,
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• synchronous resonant quasi-Z-source DC-DC converter.

However, a closer analysis of the above-mentioned power converters shows that all of

them can be successfully represented as the series-parallel connection of multiple half-

bridge modules. Therefore, to assure high configurability of discussed modular power

converter, the basic power electronic building block used in it has to be a half-bridge

topology, similar to the concept investigated in [191]. The PEBB concept itself is very

interesting for the reliability-oriented designs, thanks to high element re-usage, which

greatly simplifies the reliability estimation. As depicted in Fig. 47, even complex design

can be represented as set of functional modules, with properly defined failure rates.

a)

b)

Figure 47. Graphical representation of example PEBB-based power converter and correspond-
ing reliability block diagram [110].

The first step of DfR procedure - the boundary conditions are defined as a set of

functional requirements (e.g. describing power converter behavior or work modes) and

operating conditions. As an example, functional requirements for PEBB-based converter

and PEBB module could be defined as follows:

• PEBB module has to be air-cooled.

• PEBB-based power converter has to assure output voltage linear regulation.

• PEBB-based demonstration power converter has to be the Buck converter.

• Reliability goal is MTBF no less than 5 years.

• PEBB module has to support the Reliability-Oriented Control (ROC) algorithm.

• Etc.
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4.1. Reliability Oriented Design of Power Electronic Building Block module

In contrast, a operating conditions are measurable, countable and well-defined, as

presented in following examples:

• Target application - buck converter.

• Target load - 30 Ω

• Output Voltage - 200 VRMS

• Ambient temperature - 30◦C

• Switching frequency - 100 kHz

• Input voltage - 400 V

• Relative humidity - ≥ 85%

• Mission profile is continuous power cycling - tON = 1 s, tON = 1 s, P = PNOMINAL

• Etc.

In presented example, the topology of PEBB-based demonstration power converter

was defined a priori, thus the simulation stage was focused only on selection of the

critical components, and the rough stress level estimation. The detailed discussion over

active component selection and simulation study was presented in [192], and was initiated

with the benchmark analysis of WBG devices for low-power applications. At first, the

600−650 [V ] components were found as the optimum compromise between keeping proper

voltage derating for 400 [V ] PEBB module and cost efficiency of demonstration PEBB-

based power converter. Then, state-of-the-art WBG components in TO − 247 housing,

listed in Tab. 10, were chosen for further evaluation. Next, selected WBG devices

were subjected to comparative analysis, focused on fundamental electrical parameters,

e.g.: RDSON
, rated IDS, ZTHJC

, maximum allowed VGS, Total Gate Charge (QG).

To complete the comparative study, switching and conduction losses were estimated

analytically for each transistor, and depicted side-by-side with electrical parameters in

Fig. 48. Based on this analysis, TP65H035WS (T5), TP65H035G4WS (T6) GaN

cascodes and UF3C065040K3S (T1) SiC cascode were considered as most solutions for

discussed demonstration PEBB-module. The PEBB-module discussed in this case study

was designed with the UF3C065040K3S (T1) SiC cascode.
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Table 10. Proposal of 600−650 V Wide-Bandgap (WBG) power semiconductor devices suitable
for demonstration modular power converter based on Power Electronic Building Block (PEBB)
concept [110].

Part Number Label Current
Rating RDSON

[-] [-] [-] [A] [mΩ]

SiC

UF3C065040K3S T1 54 42
IMW65R027M1HXKSA1 T2 47 27

SCT3060ALGC11 T3 39 60
SCT3030ALHRC11 T4 70 30

GaN

TP65H035WS T5 46.5 41
TP65H035G4WS T6 46.5 41
TP65H070LDG T7 25 85

IGT60R070D1ATMA1 T8 31 70

Figure 48. The radar chart with graphical comparison of key parameters of Wide-Bandgap
(WBG) power semiconductor devices.
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4.1. Reliability Oriented Design of Power Electronic Building Block module

Table 11. Stress levels for semiconductor power devices used in PEBB-based buck converter.

Stressor unit T1sym T2sym
VDSPEAK

[V ] 404 399
VDSRMS

[V ] 286 282
IDSPEAK

[A] 10.9 10.97
IDSRMS

[A] 4.98 −4.99
∆TJ [◦C] 29.3 37.9
TJMAX

[◦C] 54.3 62.9

Afterwards, it was confirmed if proposed topology allows to fulfill functional require-

ments. The PLECS model used for this purpose is presented in Fig. 49a), while the

detailed list of stress level for active components is presented in Tab. 11. To estimate

transients values, corresponding simulation was performed in SPICE environment, as

depicted in Fig. 49b). The detailed discussion over active component selection and

simulation study were presented in [192].

Next stage of the proposed DfR procedure are component- and system-level lifetime

estimation, performed in parallel to electrical design. In the presented example of the

PEBB module, there are only two types of critical components:

• WBG power devices (FET1, FET2),

• Output capacitor (C1).

However, it was impossible to use reliability model discussed in 3.3.3 in reliability assess-

ment of PEBB-based demonstration power converter, as PEBB-module was designed with

WBG-devices in TO− 247 housing. Due to significant difference in construction between

TO − 247 and SOT − 227B housing, such approach would be simply erroneous. Thus,

the reliability evaluation of the PEBB-based buck converter discussed in this paper may

be subjected to rather significant error, as it is based on test results presented in research

papers and publicly available materials. However, the main goal of presented case study is

rather explanation how reliability assessment or other key steps of DfR procedure should

be performed, than exact reliability estimation. Thus, in the case of presented PEBB-
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a)

b)

Figure 49. Electrical model used for steady-state stress levels estimation [110].
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based demonstration power converter, the absolute accuracy of reliability predictions is

not relevant.

As presented in 2.1, the UL of discrete SiC power devices is mostly limited by durability

of the bond-wires, although other fatigue-like failure modes also play important role. As

discussed in 3.3.3, the reliability models suitable for analysis of such failure mechanisms are

the LESIT model and the CIPS2008 model. However, the CIPS2008 model was originally

designed for IGBT modules. Thus, for UL estimation the LESIT model presented in

[129] was used. This particular model was found more suitable than the CIPS2008, as it

was identified for GaN HEMT devices in TO − 220 housing. TO − 220 housing is very

close to the TO−247 housing, of SiC power MOSFETs used in the demonstration power

converter. Moreover, the bond wire fatigue is typical package-related failure mechanisms,

which is rather affected by the packaging technology, than the type of semiconductor chip.

Thus, this particular LESIT model was found as the most suitable for UL estimation of

SiC cascode. Next, the estimated stress level values were substituted to Eq. (24) to

assess the number of cycles before failure. Then, the working time expressed in years was

calculated, assuming 24 hour per 7 days a week operation with earlier mentioned mission

profile - power cycling tON = 1 s, tOFF = 1 s. Mission profile was depicted in Fig. 50.

The UL, represented in a number of power cycles and years of work, is presented in Tab.

12.

Figure 50. Example mission profile of PEBB-based buck converter [110].
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Nf = 6 · 1020 ·∆T−8.112
J (24)

Table 12. Estimated useful lifetime of Wide-Bandgap (WBG) power semiconductor devices.

FET1 FET2
Cycles to failure [109] 757e6 93.8e6
Working time [years] ∼ 48 ∼ 6

As presented in 2.2, the dominant failure mode of SiC power devices in their UL are

Single Event Effects (SEE). Thus, to estimate the Failure Rate (FR), the reliability model

presented in [124] was used. Based on the maximum VDS, and referenced model, failure

rates were calculated as follows:

• Failure Rate for transistor T1: 12.5 failures
109 hours

,

• Failure Rate for transistor T2: 12.5 failures
109 hours

.

The second major critical component of the presented PEBB-based buck converter are

foil capacitors used for output filter, whose main stressors are: voltage, temperature, and

humidity [193]. For purposes of the case study analysis, it was assumed that foil capacitors

do not degrade or wear out, thus they have a constant FR. Such assumption could not be

done, if demonstration power converter would operate in tropic or humid environment,

due to high risk of humidity-induced degradation of failure. However, boundary conditions

listed in previous paragraphs clearly defined low relative humidity for both storage and

operation. Next, the target FR was estimated based on the base failure rate (λ0) and

proper temperature and voltage correction factors (πT , πV ), as presented in Eq. (3) in

Chapter 2.

λ = λ0 · πT · πV = 2 · 1 · 2 = 4 (25)

Thus, stress levels estimated during simulation study and data given by foil capacitor

manufacturer [112], the failure rate of output filter was denoted as 4 failures
109 hours

per capacitor.

The next step of proposed DfR procedure is module- and system-level reliability

assessment. Of course, presented PEBB-based power converter consists many more critical
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components than only WBG power semiconductor devices or foil capacitors. However,

they are not essential for the tutorial purposes of presented case study analysis, and

therefore they are not further discussed in this reliability assessment. In general, FR of

integrated circuits, small-signal semiconductor devices, resistors, connectors, etc. can be

takes from datasheet or estimated based on any suitable standard - e.g.:

• Military Handbook: Reliability Prediction of Electronic Equipment MIL-217F-

HDBK [194],

• European Reliability Prediction Standard IEC-62380 [195],

• European Reliability Prediction Standard IEC-61709 [196],

• FIDES Reliability Methodology for Electronic Systems Guideline [197],

• Telcordia SR-332 Reliability Prediction Procedure for Electronic Equipment [198],

• Siemens SN 29500 Electronic Reliability Prediction standard,

• etc.

Then, the module-level reliability assessment can be done with proper Reliability Block

Diagram (RBD), Markov Diagram (MD) or Fault-Tree Analysis (FTA). If any component

failure leads to module’s malfunction, Module Failure Rate (λMODULE) can be represented

as sum of Failure Rates of critical components (λn) , as presented in Eq. (26).

λMODULE =
k∑

n=1

λn (26)

Thus, if PEBB module consists of only 2 critical components (transistors T1 and T2,

12.5 failures
109 hours

each), and DC-link consists of 6 foil capacitors (4 failures
109 hours

each), λ(t) for

these modules will be 25 failures
109 hours

and 24 failures
109 hours

, accordingly.

System-level reliability assessment is performed in the same way as the module-level

reliability assessment. Therefore, the total failure rate of PEBB-based buck converter

was found 49 failures
109 hours

, which corresponds to MTBF 20.4 million hours. Based on the

estimated useful lifetime, such failure rate should be correct for 5.9 years of operation

(see Tab. 12). Thus, it is expected that the reliability goal shall be fulfilled.

Afterwards, a PoC was released and tested. As stated in section 2.2, the main goals of

Proof of Concept phase in modified DfR procedure are:
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• verification if all functional requirements are fulfilled,

• detection and remove of most of design flaws,

• confirmation if stress levels are not higher, than values used for reliability estimation.

Thus, the test routines shall be properly designed to thoroughly evaluate each desired

functionality. As an example, to verify proper support of the ROC algorithm, both range

of linear regulation and step response of VGS control circuit had to be checked up. The

ROC algorithm itself was described in [110], and will not be further discussed in this

thesis as irrelevant to the presented case study analysis. As depicted in Figs. 51 and 52,

tests confirmed satisfactory accuracy of VGS linear regulation, however the step response

showed rather low dynamics of electrical circuit. Nevertheless, this functional requirement

was confirmed as fulfilled.

Figure 51. Accuracy and range of VGS controller circuit, which enables Reliability-Oriented
Control (ROC) algorithm [110].

Afterwards, the start-up of PEBB-based buck converter was initiated. The test

routine designed for this purpose consists of operation for multiple ranges of input/output

voltages, switching frequencies, and load conditions. Although the device was designed for
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Figure 52. Step response of VGS controller for VGS = 17.2 V and idle operation [110].

specific operating conditions, the test routine covered a far further range to increase stress

levels and visualize any design flaws. As an example, increasing the switching frequency

to 200 kHz allowed to highlight the high-frequency oscillations present in the VGS signal,

as depicted in Fig. 53a). As it was stated before, such voltage overstress may accelerate

the gate oxide degradation, resulting in fatal failure of WBG power semiconductor device.

Thus, the following design flaws were identified based on these and other test results:

• a suboptimal design of a commutation loop in a half-bridge module,

• a suboptimal design of gate circuit, which increased a Gate-Drain Parasitic

Capacitance (CGD).

To get rid of these design flaws, the PEBB-module was immediately re-designed. It

is expected that in typical short TTM projects, time pressure will allow designers to

prepare an only single PoC. However, in the case of the presented PEBB-based buck

converter, the tutorial effort and proper demonstration of the modified DfR procedure

are far more important than the time spent on its development. Thus, these design flaws

could be eliminated before reaching the reliability growth stage. As presented in Fig. 54,

optimization of PCB design allowed to reduce both parasitic commutation loop inductance

and CGD. To be more specific, the drain plane was moved away from the driver circuit
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and the gate-source terminals. Moreover, few countermeasures were taken to reduce the

stray inductance of the commutation loop. Firstly, both output terminals and power

MOSFETs were put closer to each other, to decrease the total length of a copper plane

from positive to negative terminal. The width of copper planes was also increased. At

last, a few DC-link foil capacitors were replaced with ceramic ones. This resulted in far

less ringing of either VGS or VDS voltage, as depicted in 53b).

a) b)

Figure 53. VDS and VGS for initial Proof of Concept (PoC), presented in channel 1 and 2
respectively [110].

a) b)

Figure 54. Photography of original Physics of Failure (PoF) of Power Electronic Building Block
(PEBB) module a), and photography of PEBB module with minimized commutation loop b)
[110].

The cross-comparison of real stress levels and initially estimated values are presented

in Tab. 13. Closer analysis showed that stressors were slightly underestimated, however it

had no major impact on the estimated failure rate. However, thus to the higher amplitude

of junction temperature swing than expected, the useful lifetime of T2 power MOSFET

was reduced to ∼ 18.8e6 cycles, which corresponds to ∼ 1.2 years of operation. Thus, the
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Table 13. Cross comparison of estimated and real stress levels for semiconductor devices in
PEBB-based buck converter.

Stressor unit T1sym T2sym T1real T2real
VDSPEAK

[V ] 404 399 465 405
VDSRMS

[V ] 286 282 289 285
IDSPEAK

[A] 10.9 10.97 10.6 10.62
IDSRMS

[A] 4.98 4.99 5.44 5.4
∆TJ [◦C] 29.3 37.9 34.5 46.2
TJMAX

[◦C] 54.3 62.9 59.5 71.2

reliability goals had not been confirmed, which indicates that the PEBB module requires

optimization.

The next steps - reliability growth and reliability demonstration were not in the scope

of presented case study, thus they are not further discussed in this section. As laboratory

testing defined for these steps is extremely time-consuming and costly, due to highly

invasive nature of stress tests, they are meant only for proven designs. Unfortunately,

presentation of test procedures, results or reports prepared for TRUMPF’s products was

not possible, as it would reveal company know-how and intellectual property. Thus,

neither reliability growth or reliability demonstration was not described with dedicated

case study. The last step of proposed DfR procedure is the reliability maintenance, for

which a practical example is described in the next section.

4.2 Reliability Maintenance - the obsolescence man-
agement

As it was described in section 2.3, the main purpose of the reliability maintenance

procedure is to ensure that reliability goals will be always fulfilled for mass produced power

supplies. Thus, in this step the reliability engineering partially overlaps with the quality

control and assurance. One of the biggest challenges related to the reliability maintenance

is the obsolescence management. Every HPPS is an extremely complex system, which

consists of many components - from low voltage analog and digital electronics (e.g. drivers,
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optocouplers, operational amplifiers), through power electronic semiconductor devices, up

to passive components (e.g. foil/electrolytic/ceramic capacitors, inductors). Each of these

components has its lifecycle, and at a certain point becomes obsolete, which brings up the

question of how to ensure that the new counterpart will not negatively affect the reliability

of the whole HPPS. This can be done with thorough analytical study, simulation study

or with proper Reliability-Oriented Comparative Test (ROCT). Such a test is presented

in this case study analysis.

Figure 55. Temperature profile chosen for simplified ALT of driver circuits [199].

The Reliability-Oriented Comparative Test (ROCT) is a simplified version of ALT,

which also has to be optimized for the particular failure or degradation mechanism.

However, the ROCT does not provide any information about absolute MTBF or UL

of tested component. Instead, it allows to distinguish which device - among samples

subjected to ROCT - is the most durable for particular failure or degradation mechanism.

In presented example [199], power MOSFET driver circuits in SOIC − 8 housing were

subjected to the Temperature and Power Cycling (TPC) test, based on the JESD22-A104E

and JESD22-A100D [200, 201] standards. The TPC was found as the most similar to the
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real-life operating conditions of the HPPS. The ambient temperature swing was set to

80◦C (from 5◦C to 85◦C), and three set of loads were prepared to introduce high power

losses inside DUTs. The test profile is depicted in Fig. 55, while simplified schematic of

the laboratory setup is presented in Fig. 56

Figure 56. Simplified electrical diagram of the test bench designed for the Reliability-Oriented
Comparative Test (ROCT) [199].

The test setup consisted of 108 driver circuits grouped into 6 sets, as it is presented

in Tab. 14. All DUTs were operating with high switching frequency (100 kHz) and

were connected to the capacitive-resistive load. Sections 1, 2 and 3 were connected to

the 30 nF , 20 nF and 10 nF capacitive load accordingly. To simplify the maintenance

procedure, a light emitting diode was connected in parallel to each load - the failure was

indicated by the Light-Emitting Diode (LED) turn off. The EoL criteria for tested driver

circuits were defined as follows:

• fatal failure,

• constant on-state,

• constant off-state,

• improper shape of output signal,

• increase of voltage drop across DUT by 20%.
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Table 14. Load and stress conditions defined for tested samplesets [199].

Vendor Lot Size Load TCMAX

[−] [−] [nF ] [◦C]
A 18 10 55
B 18 10 55
A 18 20 65
B 18 20 65
A 18 30 85
B 18 30 85

Table 15. Test results - number of failures recorded during test per sampleset [199].

Section Vendor Lot TC Swing Faults
[−] [−] [−] [◦C] [−]
1A A 18 65− 145 0
1B B 18 65− 145 0
2A A 18 35− 115 0
2B B 18 35− 115 3
3A A 18 45− 125 0
3B B 18 45− 125 0

After 1500 thermal cycles, the test was finished and each DUT was subjected to careful

laboratory analysis to verify if any of tested samples have met EoL criteria. During the

discussed examination, 3 failed samples from vendor B were found. All failed samples

were working with the 20 nF capacitive load. Laboratory analysis allowed to distinguish

following failure modes:

• internal short circuit between V CC and V EE pin, which led to burnout of the

SOIC − 8 package,

• failure of single switch in the push-pull driver’s circuit output, which led to improper

shape of the output signal - only the negative voltage was supplied to the load.

Correct and incorrect shape of driver circuit output signal are presented in Figs. 57a)

and 57b) respectively. In the case of the faulty driver, positive half-period of driver’s

output signal was heavily distorted - decreased to ∼ 1 V instead of 12 V . However,
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negative half-period was not distorted, which suggests that failure was related to burnout

of the low-side switch in the driver circuit. Such failure, although did not resulted in the

burnout, would cause an improper operation of the power semiconductor device - it would

not turn on. Thus, this failure mode would end up in malfunction of HPPS.

Summarizing, 3 out of 54 samples from old supplier were damaged, while none of 54

new counterparts from the new vendor have failed (see Tab. 15). The discussed test

proved that the new type of power MOSFET driver circuit is more durable, for the TPC,

than the previously used component. This suggests that the replacement of driver circuits

B with the driver circuits A should not negatively affect reliability of the HPPS.

a) b)

Figure 57. Correct a) and incorrect b) shape of driver output signal [199]. Result indicates
failure (short circuit) of a low-side MOSFET in driver circuit.

4.3 Conclusions

In this chapter, a case study analysis for a modified DfR procedure is given. Discussion

over design of Power Electronic Building Block (PEBB) module for PEBB-based power

converters allows to analyse purpose and scope of:

1. boundary condition definition,

2. simulation stage,

3. design stage and initial reliability evaluation,

4. Proof of Concept (PoC) laboratory testing.
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Moreover, presented evaluation shows that DfR favors modular or PEBB-based designs,

as they allow to greatly reduce effort required for reliability assessment. This assumption

was proven with, calculations of Useful Lifetime (UL) and Failure Rate (FR) for PEBB-

based Buck converter.

In this section, concept of the reliability maintenance is also discussed. Discussion

stresses out the necessity of thorough testing and qualification procedures for each

component, as even the simplest element may easily lower reliability of any complex

system - like High Performance Power Supply (HPPS) for plasma processing. To address

the issue of industry-friendly, cost-efficient qualification process for electronic components,

a concept of a Reliability-Oriented Comparative Test (ROCT) was introduced. Presented

test results proves that proposed counterpart of driver circuit has higher reliability, than

the previously used one. Thus, usage of tested counterpart will not deteriorate overall

reliability of HPPS.
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Summary

5.1 Goals and outcome

To prove this thesis following goals were defined:

1. Analysis of operating conditions of HPPSs for plasma processing systems and power

converter topologies used for such applications.

2. Proposal of the DfR procedure, suitable for the development of new HPPSs.

3. Design and start-up of the ALT of SiC MOSFET in SOT − 227B housing.

4. Identification of reliability model, based on the ALT results.

Goals defined in 1 were found fulfilled. A detailed analysis of plasma processing

techniques and types of plasma systems, given in 1.1, indicates a significant demand

for increasing the reliability of High Performance Power Supplies (HPPSs) for plasma

processing. The presented analysis covers not only chemical- or physical- aspects of

plasma, but also the technical challenges related to the manufacturing processes of

semiconductor devices, Flat Panel Displays (FPDs), and Low-E glass. This discussion

allows to distinguish two types of plasma systems: batch and in-line, and unique

requirements for HPPSs for plasma processing (ability to withstand and suppress arc,

supporting a very high du/dt at output voltage, ability to withstand high VSWR).

Moreover, typical operating conditions of batch systems cause Power Cycling (PC) of

HPPSs in this system. Thus, power semiconductor devices in those HPPSs are subjected
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to a heavy thermomechanical load, which may shorten their Useful Lifetime (UL). At last,

a taxonomy of HPPSs for plasma processing and evaluation of power converter topologies

for such applications is given.

In chapter 2, various strategies or reliability improvement of HPPSs are cross-compared.

Presented analysis shows that the Design for Reliability (DfR) concept is most suitable

for modern HPPSs. This conclusion was given, as the fault-tolerant design requires

module- or component- level redundancy, which increases the size and price of HPPS.

Unfortunately, it opposes market demands on price and size reduction of HPPSs for

plasma processing. Moreover, fault-handling itself would disrupt the plasma process,

which could deteriorate the quality of the processed layer. The Remaining Useful Lifetime

(RUL) estimation was challenging in practical realization, due to the variety and number

of critical components in modern HPPSs. Moreover, off-line State of Health (SoH)

estimation methods brings up concerns about cyber-security and the safety of recorded

data. Thus, off-line SoH estimation methods might not be accepted by end-users of HPPSs

for plasma processing. At last, reliability modelling was found as part of the DfR concept.

Discussion given in 2 shows that classical DfR is not a valid approach for HPPSs for

plasma processing. Thus, a modified DfR procedure, optimized for short lifespan or Time

To Market (TTM) projects, was proposed. The presented modification allows to shorten

the time required to prepare the Proof of Concept (PoC) of new HPPS, and shifts the

pressure from the simulation study to the extensive laboratory testing. Moreover, the

modified DfR procedure introduces a concept of reliability maintenance, which was not

previously addressed.

Presented analysis allows distinguishing the main challenges related to the successful

implementation of the modified DfR procedure to the engineering workflow. To address

those challenges a set of tasks and workpackages was defined. Next, based on the field

reliability data, power semiconductor devices were found as the dominant root-cause of

failures in HPPSs for plasma processing. This led to the conclusion that further research

shall be focused on power semiconductor devices.
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In chapter 3 the whole procedure of identification of SiC power MOSFET reliability

model is given. Analysis covers not only cross-comparison of different strategies for

Accelerated Lifetime Test (ALT) of SiC power MOSFETs, but also a technical challenges

related to the preparation of ALT. To make ALT more industry-friendly, concept of

fatigue-like failure mode was introduced, which allows to group similar failure modes

(bond wire lift-off, bond wire heel cracking, solder joint fatigue, solder delamination) and

treat them as one. This approach is much more suitable for some industrial customers of

power electronics, as it allows to decrease number of ALTs required to develop a reliability

model. According to Eq. 27, Number of Required Tests (NTEST ) to identify reliability

model is a product of Number of Failure Modes (NFM) and Number of Stressors (NSTR).

Proposed approach allows to reduce NFM to 1.

NT = NFM ·NS (27)

The last goal, which was „Identification of reliability model, based on the ALT results”

was also fulfilled. Presented analysis proves that Weibull distribution is suitable for

reliability modelling of fatigue-like failure modes. Moreover, proposed approach of

combining a Weibull distribution with a CIPS2008 model, allows to obtain the PDF

for various operating conditions. Good fitness of the proposed reliability model to the

ALT results, indicates that it might be used for purposes of DfR procedure.

In chapter 4, a case study analysis for a modified DfR procedure is given. For this

purpose, a Power Electronic Building Block (PEBB) and PEBB-based power converter

were designed. Presented case study shows in practice chosen aspects of modified DfR

procedure:

1. boundary condition definition,

2. simulation stage,

3. design stage and initial reliability evaluation,

4. Proof of Concept (PoC) laboratory testing.
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In presented case study, Useful Lifetime (UL) of SiC power MOSFETs in TO−247 housing

used in the PEBB module, was estimated based on the given reliability model. Moreover,

the Failure Rate (FR) of power semiconductor devices and foil capacitors was also

calculated. Next, case study analysis on the reliability maintenance was given. Presented

test results show the importance of conducting the Reliability-Oriented Comparative Test

(ROCT), as even the slightest change in the design of HPPS may deteriorate its reliability.

Based on the presented results, thesis given in chapter 1 was found correct. Indeed, it

is possible to develop a probabilistic model, describing a probability of failure of Silicon

Carbide (SiC) power MOSFET, which enables reliability evaluation of newly developed

High Performance Power Supply (HPPS) for plasma processing, according to the modified

DfR procedure. Moreover, following outcomes are considered as own achievements:

1. Methodology of ALT and Power Cycling (PC) for SiC power MOSFETs in

SOT − 227B housing.

2. Large scale test bench for PC of SiC power MOSFETs.

3. The gate voltage controller circuit for SiC power MOSFETs subjected to PC test.

4. Method for failure detection of SiC power MOSFETs, suitable for usage in the ALT.

5. Methodology of ROCT for electronic circuits (MOSFET drivers).

6. A multiparameter reliability model for SiC power MOSFET in SOT−227B housing.

7. Modified DfR procedure, optimized for projects with a short lifespan or TTM.

8. Concept of the reliability maintenance, as a key aspect of DfR methodology and

procedure.

9. Reliability-Oriented Control (ROC) algorithm and the design of a electronic circuit

supporting proposed ROC algorithm.
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5.2 Areas for further research

Reliability engineering is a broad, multi-disciplinary branch of technical sciences, which

will face its renaissance in the field of power electronics. Moreover, based on the presented

research and state-of-the-art analysis, it is expected that future trend in this matter will

focus on:

• Identification of still unrevealed degradation mechanisms in new generations of

power semiconductor and optoelectronic devices. One of the limiting factors is

duration of ALTs, which significantly slows the research over new failure modes.

• Standardization of ALT procedures, based on novel reliability models and detailed

understanding of degradation mechanisms of power semiconductor devices. This

tendency is meant to increase accuracy and reproducibility of ALTs, as well as to

shorten they duration.

• The Power Electronic Building Block (PEBB) concept. Modular design is highly

favorable choice, from the point of view of the reliability assessment. Thus,

increasing awareness about reliability amoung users of HPPSs, and more demanding

formal requirements about power electronics reliability, might cause a shift towards

PEBB-based designs.

Thus, to ensure that future work will fit to above-mentioned directions, it will be

focused on:

• Reliability modelling of power semiconductor devices subjected to the low ∆TJ

(below 40◦C).

• Reliability modelling of power semiconductor devices subjected to the PC with

different tON and tOFF ratios.

• PC of power semiconductor devices, where DUTs are subjected to the switching

losses instead of conduction losses.

• Highly reliable and robust Power Electronic Building Blocks (PEBBs) for new

generations of modular HPPSs.
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5.3 Future work related to the modified Design for
Reliability (DfR) procedure

Beside research described in previous subsection, much effort will be put on further

development of proposed modified DfR procedure. Based on the work packages given

in subsection 2.4, following tasks can be determined:

• Development of reliability models for critical components used in the next gener-

ations of HPPSs, as well development of industry-friendly ALT methodologies for

them. Critical components which requires such effort are e.g.:

– capacitors,

– new generations of switching diodes,

– new generations of junction and field-effect components,

– GaN HEMT devices.

• Development of dedicated tools and measurement procedures, to ensure that during

laboratory testing of HPPS, key stressors are estimated with sufficient accuracy,

repeatability and reproducibility for each critical component. This addresses the:

– a ripple current measurement in the bundles of capacitors,

– a peak and root-mean-square current measurement in the multichip modules

or discrete components in complex, packed designs,

– a junction temperature measurement in the multichip modules or discrete

components in complex, packed designs,

– electrical measurements of power semiconductor devices operating with very

high switching frequency (e.g. 4 MHz, 13.56 MHz, 60 MHz), or with very

high du/dt.

• Development of Reliability-Oriented Comparative Test (ROCT) procedures for

other critical components of modern HPPSs.
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